Coprimitive sets and inextendable codes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

T. L. Alderson, A. A. Bruen

ABSTRACT

Complete (n,r)-arcs in PG(k−1,q) and projective (n,k,n−r)q-codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long non-linear codes. We also show that certain short linear codes are maximal. The methods here may be just as interesting as the results. They are based on the Bruen–Silverman model of linear codes (see Alderson TL (2002) PhD. Thesis, University of Western Ontario; Alderson TL (to appear) J Combin Theory Ser A; Bruen AA, Silverman R (1988) Geom Dedicata 28(1): 31–43; Silverman R (1960) Can J Math 12: 158–176) as well as the theory of Rédei blocking sets first introduced in Bruen AA, Levinger B (1973) Can J Math 25: 1060–1065. More... »

PAGES

113-124

References to SciGraph publications

  • 1992-06. Optimal ternary linear codes in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1988-10. On extendable planes, M.D.S. codes and hyperovals in PG(2, q), q=2t in GEOMETRIAE DEDICATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0

    DOI

    http://dx.doi.org/10.1007/s10623-007-9079-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041732343


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of New Brunswick", 
              "id": "https://www.grid.ac/institutes/grid.266820.8", 
              "name": [
                "Mathematical Sciences, University of New Brunswick Saint John, E2L 4L5, Saint John, NB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alderson", 
            "givenName": "T. L.", 
            "id": "sg:person.0604672122.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604672122.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Calgary", 
              "id": "https://www.grid.ac/institutes/grid.22072.35", 
              "name": [
                "Electrical and Computer Engineering, University of Calgary, T2N 1N4, Calgary, AB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bruen", 
            "givenName": "A. A.", 
            "id": "sg:person.010620072145.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00124893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013202794", 
              "https://doi.org/10.1007/bf00124893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00124893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013202794", 
              "https://doi.org/10.1007/bf00124893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcta.2003.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013521948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-9958(65)90080-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021183709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcta.1998.2915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025106249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00147798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025324460", 
              "https://doi.org/10.1007/bf00147798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00147798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025324460", 
              "https://doi.org/10.1007/bf00147798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9800(69)80095-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033537319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ffa.2005.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046662568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcta.2006.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050486166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ffa.2003.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053042159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1147/rd.45.0532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063182564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1963.13.421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069063257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1960-014-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072264295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1973-113-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072265795"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-06", 
        "datePublishedReg": "2008-06-01", 
        "description": "Complete (n,r)-arcs in PG(k\u22121,q) and projective (n,k,n\u2212r)q-codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long non-linear codes. We also show that certain short linear codes are maximal. The methods here may be just as interesting as the results. They are based on the Bruen\u2013Silverman model of linear codes (see Alderson TL (2002) PhD. Thesis, University of Western Ontario; Alderson TL (to appear) J Combin Theory Ser A; Bruen AA, Silverman R (1988) Geom Dedicata 28(1): 31\u201343; Silverman R (1960) Can J Math 12: 158\u2013176) as well as the theory of R\u00e9dei blocking sets first introduced in Bruen AA, Levinger B (1973) Can J Math 25: 1060\u20131065.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10623-007-9079-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "name": "Coprimitive sets and inextendable codes", 
        "pagination": "113-124", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10623-007-9079-0"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c6cb7ca6d74e03a91ee9f605cedd3d8d7dfbc44237c1bb7b21707c88d97fdfe4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041732343"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10623-007-9079-0", 
          "https://app.dimensions.ai/details/publication/pub.1041732343"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56196_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10623-007-9079-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10623-007-9079-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N90322ac6fd9e45a39daa5896e8f522be
    4 schema:citation sg:pub.10.1007/bf00124893
    5 sg:pub.10.1007/bf00147798
    6 https://doi.org/10.1006/jcta.1998.2915
    7 https://doi.org/10.1016/j.ffa.2003.09.007
    8 https://doi.org/10.1016/j.ffa.2005.04.002
    9 https://doi.org/10.1016/j.jcta.2003.09.006
    10 https://doi.org/10.1016/j.jcta.2006.11.005
    11 https://doi.org/10.1016/s0019-9958(65)90080-x
    12 https://doi.org/10.1016/s0021-9800(69)80095-5
    13 https://doi.org/10.1147/rd.45.0532
    14 https://doi.org/10.2140/pjm.1963.13.421
    15 https://doi.org/10.4153/cjm-1960-014-0
    16 https://doi.org/10.4153/cjm-1973-113-4
    17 schema:datePublished 2008-06
    18 schema:datePublishedReg 2008-06-01
    19 schema:description Complete (n,r)-arcs in PG(k−1,q) and projective (n,k,n−r)q-codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long non-linear codes. We also show that certain short linear codes are maximal. The methods here may be just as interesting as the results. They are based on the Bruen–Silverman model of linear codes (see Alderson TL (2002) PhD. Thesis, University of Western Ontario; Alderson TL (to appear) J Combin Theory Ser A; Bruen AA, Silverman R (1988) Geom Dedicata 28(1): 31–43; Silverman R (1960) Can J Math 12: 158–176) as well as the theory of Rédei blocking sets first introduced in Bruen AA, Levinger B (1973) Can J Math 25: 1060–1065.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N6a0d62cd540e4701adc2a6abee40db82
    24 Nfbd2c8185dfe4e88920c026576d8daf3
    25 sg:journal.1136552
    26 schema:name Coprimitive sets and inextendable codes
    27 schema:pagination 113-124
    28 schema:productId N32bd88c0f84e433fbba5b3de87a9324b
    29 N4365af328e87498eb0651a99f76da8ad
    30 N5159fcc2f26647d6a17a3897554f6962
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041732343
    32 https://doi.org/10.1007/s10623-007-9079-0
    33 schema:sdDatePublished 2019-04-15T09:27
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N6a74d6913a8b42028eb63264afcc1db4
    36 schema:url http://link.springer.com/10.1007%2Fs10623-007-9079-0
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N32bd88c0f84e433fbba5b3de87a9324b schema:name dimensions_id
    41 schema:value pub.1041732343
    42 rdf:type schema:PropertyValue
    43 N4365af328e87498eb0651a99f76da8ad schema:name doi
    44 schema:value 10.1007/s10623-007-9079-0
    45 rdf:type schema:PropertyValue
    46 N5159fcc2f26647d6a17a3897554f6962 schema:name readcube_id
    47 schema:value c6cb7ca6d74e03a91ee9f605cedd3d8d7dfbc44237c1bb7b21707c88d97fdfe4
    48 rdf:type schema:PropertyValue
    49 N6a0d62cd540e4701adc2a6abee40db82 schema:issueNumber 1-3
    50 rdf:type schema:PublicationIssue
    51 N6a74d6913a8b42028eb63264afcc1db4 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N8f80b132d367471ea282181b7b60b0c8 rdf:first sg:person.010620072145.82
    54 rdf:rest rdf:nil
    55 N90322ac6fd9e45a39daa5896e8f522be rdf:first sg:person.0604672122.59
    56 rdf:rest N8f80b132d367471ea282181b7b60b0c8
    57 Nfbd2c8185dfe4e88920c026576d8daf3 schema:volumeNumber 47
    58 rdf:type schema:PublicationVolume
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Pure Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1136552 schema:issn 0925-1022
    66 1573-7586
    67 schema:name Designs, Codes and Cryptography
    68 rdf:type schema:Periodical
    69 sg:person.010620072145.82 schema:affiliation https://www.grid.ac/institutes/grid.22072.35
    70 schema:familyName Bruen
    71 schema:givenName A. A.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82
    73 rdf:type schema:Person
    74 sg:person.0604672122.59 schema:affiliation https://www.grid.ac/institutes/grid.266820.8
    75 schema:familyName Alderson
    76 schema:givenName T. L.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604672122.59
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf00124893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013202794
    80 https://doi.org/10.1007/bf00124893
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf00147798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025324460
    83 https://doi.org/10.1007/bf00147798
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1006/jcta.1998.2915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025106249
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.ffa.2003.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053042159
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.ffa.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046662568
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.jcta.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013521948
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.jcta.2006.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050486166
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/s0019-9958(65)90080-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021183709
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/s0021-9800(69)80095-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033537319
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1147/rd.45.0532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182564
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.2140/pjm.1963.13.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063257
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.4153/cjm-1960-014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264295
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.4153/cjm-1973-113-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072265795
    106 rdf:type schema:CreativeWork
    107 https://www.grid.ac/institutes/grid.22072.35 schema:alternateName University of Calgary
    108 schema:name Electrical and Computer Engineering, University of Calgary, T2N 1N4, Calgary, AB, Canada
    109 rdf:type schema:Organization
    110 https://www.grid.ac/institutes/grid.266820.8 schema:alternateName University of New Brunswick
    111 schema:name Mathematical Sciences, University of New Brunswick Saint John, E2L 4L5, Saint John, NB, Canada
    112 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...