Coprimitive sets and inextendable codes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

T. L. Alderson, A. A. Bruen

ABSTRACT

Complete (n,r)-arcs in PG(k−1,q) and projective (n,k,n−r)q-codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long non-linear codes. We also show that certain short linear codes are maximal. The methods here may be just as interesting as the results. They are based on the Bruen–Silverman model of linear codes (see Alderson TL (2002) PhD. Thesis, University of Western Ontario; Alderson TL (to appear) J Combin Theory Ser A; Bruen AA, Silverman R (1988) Geom Dedicata 28(1): 31–43; Silverman R (1960) Can J Math 12: 158–176) as well as the theory of Rédei blocking sets first introduced in Bruen AA, Levinger B (1973) Can J Math 25: 1060–1065. More... »

PAGES

113-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0

DOI

http://dx.doi.org/10.1007/s10623-007-9079-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041732343


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of New Brunswick", 
          "id": "https://www.grid.ac/institutes/grid.266820.8", 
          "name": [
            "Mathematical Sciences, University of New Brunswick Saint John, E2L 4L5, Saint John, NB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alderson", 
        "givenName": "T. L.", 
        "id": "sg:person.0604672122.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604672122.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Calgary", 
          "id": "https://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Electrical and Computer Engineering, University of Calgary, T2N 1N4, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruen", 
        "givenName": "A. A.", 
        "id": "sg:person.010620072145.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00124893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013202794", 
          "https://doi.org/10.1007/bf00124893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00124893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013202794", 
          "https://doi.org/10.1007/bf00124893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcta.2003.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013521948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90080-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021183709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcta.1998.2915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025106249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00147798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025324460", 
          "https://doi.org/10.1007/bf00147798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00147798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025324460", 
          "https://doi.org/10.1007/bf00147798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9800(69)80095-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033537319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ffa.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046662568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcta.2006.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050486166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ffa.2003.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053042159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.45.0532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063182564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1963.13.421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069063257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1960-014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1973-113-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072265795"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "Complete (n,r)-arcs in PG(k\u22121,q) and projective (n,k,n\u2212r)q-codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long non-linear codes. We also show that certain short linear codes are maximal. The methods here may be just as interesting as the results. They are based on the Bruen\u2013Silverman model of linear codes (see Alderson TL (2002) PhD. Thesis, University of Western Ontario; Alderson TL (to appear) J Combin Theory Ser A; Bruen AA, Silverman R (1988) Geom Dedicata 28(1): 31\u201343; Silverman R (1960) Can J Math 12: 158\u2013176) as well as the theory of R\u00e9dei blocking sets first introduced in Bruen AA, Levinger B (1973) Can J Math 25: 1060\u20131065.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10623-007-9079-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Coprimitive sets and inextendable codes", 
    "pagination": "113-124", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10623-007-9079-0"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6cb7ca6d74e03a91ee9f605cedd3d8d7dfbc44237c1bb7b21707c88d97fdfe4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041732343"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10623-007-9079-0", 
      "https://app.dimensions.ai/details/publication/pub.1041732343"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56196_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10623-007-9079-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10623-007-9079-0'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10623-007-9079-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2ff16501ba224b74ad4db9274bb59dc5
4 schema:citation sg:pub.10.1007/bf00124893
5 sg:pub.10.1007/bf00147798
6 https://doi.org/10.1006/jcta.1998.2915
7 https://doi.org/10.1016/j.ffa.2003.09.007
8 https://doi.org/10.1016/j.ffa.2005.04.002
9 https://doi.org/10.1016/j.jcta.2003.09.006
10 https://doi.org/10.1016/j.jcta.2006.11.005
11 https://doi.org/10.1016/s0019-9958(65)90080-x
12 https://doi.org/10.1016/s0021-9800(69)80095-5
13 https://doi.org/10.1147/rd.45.0532
14 https://doi.org/10.2140/pjm.1963.13.421
15 https://doi.org/10.4153/cjm-1960-014-0
16 https://doi.org/10.4153/cjm-1973-113-4
17 schema:datePublished 2008-06
18 schema:datePublishedReg 2008-06-01
19 schema:description Complete (n,r)-arcs in PG(k−1,q) and projective (n,k,n−r)q-codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long non-linear codes. We also show that certain short linear codes are maximal. The methods here may be just as interesting as the results. They are based on the Bruen–Silverman model of linear codes (see Alderson TL (2002) PhD. Thesis, University of Western Ontario; Alderson TL (to appear) J Combin Theory Ser A; Bruen AA, Silverman R (1988) Geom Dedicata 28(1): 31–43; Silverman R (1960) Can J Math 12: 158–176) as well as the theory of Rédei blocking sets first introduced in Bruen AA, Levinger B (1973) Can J Math 25: 1060–1065.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N2b4ab70a4fb04dd9a40c545eb42101ab
24 Nf546efc00b8c46a7ad118894df88e000
25 sg:journal.1136552
26 schema:name Coprimitive sets and inextendable codes
27 schema:pagination 113-124
28 schema:productId N0f5314008e9740468fe7f8b6fd0e5ebf
29 N752abc92def14d5599c75818b1223f9a
30 Nd5185ee58b924c54bce097bb1833826c
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041732343
32 https://doi.org/10.1007/s10623-007-9079-0
33 schema:sdDatePublished 2019-04-15T09:27
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nd958375e140044a8b979d8ffd2582edb
36 schema:url http://link.springer.com/10.1007%2Fs10623-007-9079-0
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0f5314008e9740468fe7f8b6fd0e5ebf schema:name readcube_id
41 schema:value c6cb7ca6d74e03a91ee9f605cedd3d8d7dfbc44237c1bb7b21707c88d97fdfe4
42 rdf:type schema:PropertyValue
43 N2b4ab70a4fb04dd9a40c545eb42101ab schema:issueNumber 1-3
44 rdf:type schema:PublicationIssue
45 N2ff16501ba224b74ad4db9274bb59dc5 rdf:first sg:person.0604672122.59
46 rdf:rest Ndc80c372b99d47d7a8fdd33a9f5397f8
47 N752abc92def14d5599c75818b1223f9a schema:name doi
48 schema:value 10.1007/s10623-007-9079-0
49 rdf:type schema:PropertyValue
50 Nd5185ee58b924c54bce097bb1833826c schema:name dimensions_id
51 schema:value pub.1041732343
52 rdf:type schema:PropertyValue
53 Nd958375e140044a8b979d8ffd2582edb schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Ndc80c372b99d47d7a8fdd33a9f5397f8 rdf:first sg:person.010620072145.82
56 rdf:rest rdf:nil
57 Nf546efc00b8c46a7ad118894df88e000 schema:volumeNumber 47
58 rdf:type schema:PublicationVolume
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136552 schema:issn 0925-1022
66 1573-7586
67 schema:name Designs, Codes and Cryptography
68 rdf:type schema:Periodical
69 sg:person.010620072145.82 schema:affiliation https://www.grid.ac/institutes/grid.22072.35
70 schema:familyName Bruen
71 schema:givenName A. A.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620072145.82
73 rdf:type schema:Person
74 sg:person.0604672122.59 schema:affiliation https://www.grid.ac/institutes/grid.266820.8
75 schema:familyName Alderson
76 schema:givenName T. L.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604672122.59
78 rdf:type schema:Person
79 sg:pub.10.1007/bf00124893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013202794
80 https://doi.org/10.1007/bf00124893
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf00147798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025324460
83 https://doi.org/10.1007/bf00147798
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1006/jcta.1998.2915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025106249
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.ffa.2003.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053042159
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.ffa.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046662568
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.jcta.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013521948
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.jcta.2006.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050486166
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0019-9958(65)90080-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021183709
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0021-9800(69)80095-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033537319
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1147/rd.45.0532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182564
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2140/pjm.1963.13.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063257
102 rdf:type schema:CreativeWork
103 https://doi.org/10.4153/cjm-1960-014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264295
104 rdf:type schema:CreativeWork
105 https://doi.org/10.4153/cjm-1973-113-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072265795
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.22072.35 schema:alternateName University of Calgary
108 schema:name Electrical and Computer Engineering, University of Calgary, T2N 1N4, Calgary, AB, Canada
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.266820.8 schema:alternateName University of New Brunswick
111 schema:name Mathematical Sciences, University of New Brunswick Saint John, E2L 4L5, Saint John, NB, Canada
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...