Hierarchical Analysis of Factors Associated with T Staging of Gastric Cancer by Endoscopic Ultrasound View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-03-17

AUTHORS

Jung Kim, Hyunsoo Chung, Jue Lie Kim, Eunwoo Lee, Sang Gyun Kim

ABSTRACT

BackgroundSize, ulcer, differentiation, and location are known to be factors affecting the T stage accuracy of EUS in gastric cancer. However, whether an interaction exists among recognized variables is poorly understood. The aim of this study was to identify the combinatorial characteristics of group with high overestimation rate to determine which group should be considered carefully for EUS-based treatment plans.MethodsWe retrospectively analyzed early gastric cancer patients who underwent EUS from 2005 to 2016. The accuracy of EUS T stage and factors affecting over-/underestimation were examined by using decision tree analysis, the CHAID method.ResultsThe most significant factor affecting the accuracy of the EUS T stage was the size. The rate of overestimation was higher in lesions > 3 cm (37.2% vs. 28.8% vs. 17.1%, p < 0.001). In lesions > 3 cm, the rate of overestimation was higher in lesions with an ulcer (62.1% vs. 35.0%, p < 0.001). Moreover, for lesions ≤ 3 cm, the accuracy of the EUS T stage was more affected by differentiation and location. The rate of overestimation was higher in undifferentiated-type lesions ≤ 2 cm (24.5% vs. 13.9%, p < 0.001) and 2–3 cm (33.3% vs. 25.7%, p = 0.011). In the differentiated type, the location affected the accuracy of the EUS T stage.ConclusionIn this hierarchical analysis, the rate of overestimation was higher in lesions > 3 cm with ulcer, lesions > 3 cm irrespective of ulcer, and undifferentiated-type lesions measuring 2–3 cm. More... »

PAGES

612-618

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6

DOI

http://dx.doi.org/10.1007/s10620-020-06194-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125708630

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32185663


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deep Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Detection of Cancer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endosonography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung", 
        "id": "sg:person.01064772272.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064772272.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Hyunsoo", 
        "id": "sg:person.01051267505.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051267505.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jue Lie", 
        "id": "sg:person.015721010160.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721010160.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Eunwoo", 
        "id": "sg:person.016140575600.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140575600.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang Gyun", 
        "id": "sg:person.016035435043.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00464-018-6104-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100993437", 
          "https://doi.org/10.1007/s00464-018-6104-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-004-0287-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026952739", 
          "https://doi.org/10.1007/s00261-004-0287-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-018-06621-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110448669", 
          "https://doi.org/10.1007/s00464-018-06621-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-015-4728-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002577490", 
          "https://doi.org/10.1007/s00464-015-4728-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-010-1279-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030575991", 
          "https://doi.org/10.1007/s00464-010-1279-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-011-0041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016436945", 
          "https://doi.org/10.1007/s10120-011-0041-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-010-1112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027687992", 
          "https://doi.org/10.1007/s00464-010-1112-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-011-0002-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006720512", 
          "https://doi.org/10.1007/s10120-011-0002-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-03-17", 
    "datePublishedReg": "2020-03-17", 
    "description": "BackgroundSize, ulcer, differentiation, and location are known to be factors affecting the T stage accuracy of EUS in gastric cancer. However, whether an interaction exists among recognized variables is poorly understood. The aim of this study was to identify the combinatorial characteristics of group with high overestimation rate to determine which group should be considered carefully for EUS-based treatment plans.MethodsWe retrospectively analyzed early gastric cancer patients who underwent EUS from 2005 to 2016. The accuracy of EUS T stage and factors affecting over-/underestimation were examined by using decision tree analysis, the CHAID method.ResultsThe most significant factor affecting the accuracy of the EUS T stage was the size. The rate of overestimation was higher in lesions\u2009>\u20093\u00a0cm (37.2% vs. 28.8% vs. 17.1%, p\u2009<\u20090.001). In lesions\u2009>\u20093\u00a0cm, the rate of overestimation was higher in lesions with an ulcer (62.1% vs. 35.0%, p\u2009<\u20090.001). Moreover, for lesions\u2009\u2264\u20093\u00a0cm, the accuracy of the EUS T stage was more affected by differentiation and location. The rate of overestimation was higher in undifferentiated-type lesions\u2009\u2264\u20092\u00a0cm (24.5% vs. 13.9%, p\u2009<\u20090.001) and 2\u20133\u00a0cm (33.3% vs. 25.7%, p\u2009=\u20090.011). In the differentiated type, the location affected the accuracy of the EUS T stage.ConclusionIn this hierarchical analysis, the rate of overestimation was higher in lesions\u2009>\u20093\u00a0cm with ulcer, lesions\u2009>\u20093\u00a0cm irrespective of ulcer, and undifferentiated-type lesions measuring 2\u20133\u00a0cm.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10620-020-06194-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018525", 
        "issn": [
          "0163-2116", 
          "1573-2568"
        ], 
        "name": "Digestive Diseases and Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "keywords": [
      "EUS T stage", 
      "EUS T-stage", 
      "rate of overestimation", 
      "T stage", 
      "undifferentiated-type lesions", 
      "gastric cancer", 
      "early gastric cancer patients", 
      "gastric cancer patients", 
      "T stage accuracy", 
      "cancer patients", 
      "T staging", 
      "endoscopic ultrasound", 
      "highest overestimation rate", 
      "treatment plan", 
      "ulcers", 
      "lesions", 
      "differentiated type", 
      "stage accuracy", 
      "decision tree analysis", 
      "overestimation rate", 
      "cancer", 
      "significant factor", 
      "patients", 
      "factors", 
      "group", 
      "ConclusionIn", 
      "staging", 
      "MethodsWe", 
      "rate", 
      "differentiation", 
      "ultrasound", 
      "stage", 
      "aim", 
      "CHAID method", 
      "tree analysis", 
      "hierarchical analysis", 
      "analysis", 
      "study", 
      "overestimation", 
      "location", 
      "variables", 
      "plan", 
      "types", 
      "characteristics", 
      "accuracy", 
      "size", 
      "method", 
      "interaction", 
      "EU", 
      "combinatorial characteristics"
    ], 
    "name": "Hierarchical Analysis of Factors Associated with T Staging of Gastric Cancer by Endoscopic Ultrasound", 
    "pagination": "612-618", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125708630"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10620-020-06194-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32185663"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10620-020-06194-6", 
      "https://app.dimensions.ai/details/publication/pub.1125708630"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_841.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10620-020-06194-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      95 URIs      79 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10620-020-06194-6 schema:about N06f57636ce1543e1a76cd305737c8bfe
2 N0e35deaacfa04c97b03b8953b1b082ee
3 N14eed85d4ee4459baf395603216e972d
4 N428cb721eb02431bb44cec802a58264b
5 N4d81f6425cc142a88b5e3fc8a1a4b211
6 N604bc4ff1c644188a8e2dda4c053d1e8
7 N7657aa7259ad49ad85a2ade64ffd48de
8 Na4e7c269054e4fd69e8378980d4d56ad
9 Na55d8ee23c354d968cd11303ef09f98e
10 Nb6995e948acb426fbe65462e5d9da1c7
11 Ndb23f7786fbb4d2bbe05a7e4e1329383
12 Nf1fb13672d8a47908c72cd146ed57263
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author Nab28f10fe4f349d4b88930c2180243d0
16 schema:citation sg:pub.10.1007/s00261-004-0287-z
17 sg:pub.10.1007/s00464-010-1112-0
18 sg:pub.10.1007/s00464-010-1279-4
19 sg:pub.10.1007/s00464-015-4728-2
20 sg:pub.10.1007/s00464-018-06621-w
21 sg:pub.10.1007/s00464-018-6104-5
22 sg:pub.10.1007/s10120-011-0002-z
23 sg:pub.10.1007/s10120-011-0041-5
24 schema:datePublished 2020-03-17
25 schema:datePublishedReg 2020-03-17
26 schema:description BackgroundSize, ulcer, differentiation, and location are known to be factors affecting the T stage accuracy of EUS in gastric cancer. However, whether an interaction exists among recognized variables is poorly understood. The aim of this study was to identify the combinatorial characteristics of group with high overestimation rate to determine which group should be considered carefully for EUS-based treatment plans.MethodsWe retrospectively analyzed early gastric cancer patients who underwent EUS from 2005 to 2016. The accuracy of EUS T stage and factors affecting over-/underestimation were examined by using decision tree analysis, the CHAID method.ResultsThe most significant factor affecting the accuracy of the EUS T stage was the size. The rate of overestimation was higher in lesions > 3 cm (37.2% vs. 28.8% vs. 17.1%, p < 0.001). In lesions > 3 cm, the rate of overestimation was higher in lesions with an ulcer (62.1% vs. 35.0%, p < 0.001). Moreover, for lesions ≤ 3 cm, the accuracy of the EUS T stage was more affected by differentiation and location. The rate of overestimation was higher in undifferentiated-type lesions ≤ 2 cm (24.5% vs. 13.9%, p < 0.001) and 2–3 cm (33.3% vs. 25.7%, p = 0.011). In the differentiated type, the location affected the accuracy of the EUS T stage.ConclusionIn this hierarchical analysis, the rate of overestimation was higher in lesions > 3 cm with ulcer, lesions > 3 cm irrespective of ulcer, and undifferentiated-type lesions measuring 2–3 cm.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N3505aa95ef844173931f2462bb2fcf47
30 N71d5513f7ef14ea3a139062376a0e5f5
31 sg:journal.1018525
32 schema:keywords CHAID method
33 ConclusionIn
34 EU
35 EUS T stage
36 EUS T-stage
37 MethodsWe
38 T stage
39 T stage accuracy
40 T staging
41 accuracy
42 aim
43 analysis
44 cancer
45 cancer patients
46 characteristics
47 combinatorial characteristics
48 decision tree analysis
49 differentiated type
50 differentiation
51 early gastric cancer patients
52 endoscopic ultrasound
53 factors
54 gastric cancer
55 gastric cancer patients
56 group
57 hierarchical analysis
58 highest overestimation rate
59 interaction
60 lesions
61 location
62 method
63 overestimation
64 overestimation rate
65 patients
66 plan
67 rate
68 rate of overestimation
69 significant factor
70 size
71 stage
72 stage accuracy
73 staging
74 study
75 treatment plan
76 tree analysis
77 types
78 ulcers
79 ultrasound
80 undifferentiated-type lesions
81 variables
82 schema:name Hierarchical Analysis of Factors Associated with T Staging of Gastric Cancer by Endoscopic Ultrasound
83 schema:pagination 612-618
84 schema:productId N0afdc6a711ef42fca1bc76f622fe066a
85 N8036984c177b434d945711f3cce1fce6
86 N94c8f45f5c6a49aea235165721622f6f
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125708630
88 https://doi.org/10.1007/s10620-020-06194-6
89 schema:sdDatePublished 2022-11-24T21:05
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N6ea53d965ce9462f8d80314b5217f4bf
92 schema:url https://doi.org/10.1007/s10620-020-06194-6
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N02db005e210c433d9569da432b9e78b4 rdf:first sg:person.016140575600.89
97 rdf:rest N58f52cb8fa4d464f8a1a7e510e85f5d1
98 N06f57636ce1543e1a76cd305737c8bfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Retrospective Studies
100 rdf:type schema:DefinedTerm
101 N0afdc6a711ef42fca1bc76f622fe066a schema:name doi
102 schema:value 10.1007/s10620-020-06194-6
103 rdf:type schema:PropertyValue
104 N0e35deaacfa04c97b03b8953b1b082ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Neoplasm Staging
106 rdf:type schema:DefinedTerm
107 N14eed85d4ee4459baf395603216e972d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Female
109 rdf:type schema:DefinedTerm
110 N3505aa95ef844173931f2462bb2fcf47 schema:volumeNumber 66
111 rdf:type schema:PublicationVolume
112 N428cb721eb02431bb44cec802a58264b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Male
114 rdf:type schema:DefinedTerm
115 N4d81f6425cc142a88b5e3fc8a1a4b211 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Early Detection of Cancer
117 rdf:type schema:DefinedTerm
118 N58f52cb8fa4d464f8a1a7e510e85f5d1 rdf:first sg:person.016035435043.00
119 rdf:rest rdf:nil
120 N5c2f1a2417b24c5abecdef839444feea rdf:first sg:person.015721010160.90
121 rdf:rest N02db005e210c433d9569da432b9e78b4
122 N604bc4ff1c644188a8e2dda4c053d1e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Endosonography
124 rdf:type schema:DefinedTerm
125 N6ea53d965ce9462f8d80314b5217f4bf schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N71d5513f7ef14ea3a139062376a0e5f5 schema:issueNumber 2
128 rdf:type schema:PublicationIssue
129 N7657aa7259ad49ad85a2ade64ffd48de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 N8036984c177b434d945711f3cce1fce6 schema:name pubmed_id
133 schema:value 32185663
134 rdf:type schema:PropertyValue
135 N94c8f45f5c6a49aea235165721622f6f schema:name dimensions_id
136 schema:value pub.1125708630
137 rdf:type schema:PropertyValue
138 Na4e7c269054e4fd69e8378980d4d56ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aged
140 rdf:type schema:DefinedTerm
141 Na55d8ee23c354d968cd11303ef09f98e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Decision Trees
143 rdf:type schema:DefinedTerm
144 Nab28f10fe4f349d4b88930c2180243d0 rdf:first sg:person.01064772272.15
145 rdf:rest Ndad0abccb00247f09899daf37f44343f
146 Nb6995e948acb426fbe65462e5d9da1c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Middle Aged
148 rdf:type schema:DefinedTerm
149 Ndad0abccb00247f09899daf37f44343f rdf:first sg:person.01051267505.19
150 rdf:rest N5c2f1a2417b24c5abecdef839444feea
151 Ndb23f7786fbb4d2bbe05a7e4e1329383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Deep Learning
153 rdf:type schema:DefinedTerm
154 Nf1fb13672d8a47908c72cd146ed57263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Stomach Neoplasms
156 rdf:type schema:DefinedTerm
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
161 schema:name Oncology and Carcinogenesis
162 rdf:type schema:DefinedTerm
163 sg:journal.1018525 schema:issn 0163-2116
164 1573-2568
165 schema:name Digestive Diseases and Sciences
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01051267505.19 schema:affiliation grid-institutes:grid.31501.36
169 schema:familyName Chung
170 schema:givenName Hyunsoo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051267505.19
172 rdf:type schema:Person
173 sg:person.01064772272.15 schema:affiliation grid-institutes:grid.31501.36
174 schema:familyName Kim
175 schema:givenName Jung
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064772272.15
177 rdf:type schema:Person
178 sg:person.015721010160.90 schema:affiliation grid-institutes:grid.31501.36
179 schema:familyName Kim
180 schema:givenName Jue Lie
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721010160.90
182 rdf:type schema:Person
183 sg:person.016035435043.00 schema:affiliation grid-institutes:grid.31501.36
184 schema:familyName Kim
185 schema:givenName Sang Gyun
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00
187 rdf:type schema:Person
188 sg:person.016140575600.89 schema:affiliation grid-institutes:grid.31501.36
189 schema:familyName Lee
190 schema:givenName Eunwoo
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140575600.89
192 rdf:type schema:Person
193 sg:pub.10.1007/s00261-004-0287-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026952739
194 https://doi.org/10.1007/s00261-004-0287-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00464-010-1112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027687992
197 https://doi.org/10.1007/s00464-010-1112-0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00464-010-1279-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030575991
200 https://doi.org/10.1007/s00464-010-1279-4
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00464-015-4728-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002577490
203 https://doi.org/10.1007/s00464-015-4728-2
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00464-018-06621-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448669
206 https://doi.org/10.1007/s00464-018-06621-w
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00464-018-6104-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100993437
209 https://doi.org/10.1007/s00464-018-6104-5
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s10120-011-0002-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006720512
212 https://doi.org/10.1007/s10120-011-0002-z
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s10120-011-0041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016436945
215 https://doi.org/10.1007/s10120-011-0041-5
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.31501.36 schema:alternateName Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
218 schema:name Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...