Hierarchical Analysis of Factors Associated with T Staging of Gastric Cancer by Endoscopic Ultrasound View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-03-17

AUTHORS

Jung Kim, Hyunsoo Chung, Jue Lie Kim, Eunwoo Lee, Sang Gyun Kim

ABSTRACT

BackgroundSize, ulcer, differentiation, and location are known to be factors affecting the T stage accuracy of EUS in gastric cancer. However, whether an interaction exists among recognized variables is poorly understood. The aim of this study was to identify the combinatorial characteristics of group with high overestimation rate to determine which group should be considered carefully for EUS-based treatment plans.MethodsWe retrospectively analyzed early gastric cancer patients who underwent EUS from 2005 to 2016. The accuracy of EUS T stage and factors affecting over-/underestimation were examined by using decision tree analysis, the CHAID method.ResultsThe most significant factor affecting the accuracy of the EUS T stage was the size. The rate of overestimation was higher in lesions > 3 cm (37.2% vs. 28.8% vs. 17.1%, p < 0.001). In lesions > 3 cm, the rate of overestimation was higher in lesions with an ulcer (62.1% vs. 35.0%, p < 0.001). Moreover, for lesions ≤ 3 cm, the accuracy of the EUS T stage was more affected by differentiation and location. The rate of overestimation was higher in undifferentiated-type lesions ≤ 2 cm (24.5% vs. 13.9%, p < 0.001) and 2–3 cm (33.3% vs. 25.7%, p = 0.011). In the differentiated type, the location affected the accuracy of the EUS T stage.ConclusionIn this hierarchical analysis, the rate of overestimation was higher in lesions > 3 cm with ulcer, lesions > 3 cm irrespective of ulcer, and undifferentiated-type lesions measuring 2–3 cm. More... »

PAGES

612-618

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6

DOI

http://dx.doi.org/10.1007/s10620-020-06194-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125708630

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32185663


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deep Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Detection of Cancer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endosonography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung", 
        "id": "sg:person.01064772272.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064772272.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Hyunsoo", 
        "id": "sg:person.01051267505.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051267505.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jue Lie", 
        "id": "sg:person.015721010160.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721010160.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Eunwoo", 
        "id": "sg:person.016140575600.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140575600.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang Gyun", 
        "id": "sg:person.016035435043.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00464-015-4728-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002577490", 
          "https://doi.org/10.1007/s00464-015-4728-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-018-06621-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110448669", 
          "https://doi.org/10.1007/s00464-018-06621-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-011-0041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016436945", 
          "https://doi.org/10.1007/s10120-011-0041-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-018-6104-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100993437", 
          "https://doi.org/10.1007/s00464-018-6104-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-004-0287-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026952739", 
          "https://doi.org/10.1007/s00261-004-0287-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-011-0002-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006720512", 
          "https://doi.org/10.1007/s10120-011-0002-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-010-1112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027687992", 
          "https://doi.org/10.1007/s00464-010-1112-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-010-1279-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030575991", 
          "https://doi.org/10.1007/s00464-010-1279-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-03-17", 
    "datePublishedReg": "2020-03-17", 
    "description": "BackgroundSize, ulcer, differentiation, and location are known to be factors affecting the T stage accuracy of EUS in gastric cancer. However, whether an interaction exists among recognized variables is poorly understood. The aim of this study was to identify the combinatorial characteristics of group with high overestimation rate to determine which group should be considered carefully for EUS-based treatment plans.MethodsWe retrospectively analyzed early gastric cancer patients who underwent EUS from 2005 to 2016. The accuracy of EUS T stage and factors affecting over-/underestimation were examined by using decision tree analysis, the CHAID method.ResultsThe most significant factor affecting the accuracy of the EUS T stage was the size. The rate of overestimation was higher in lesions\u2009>\u20093\u00a0cm (37.2% vs. 28.8% vs. 17.1%, p\u2009<\u20090.001). In lesions\u2009>\u20093\u00a0cm, the rate of overestimation was higher in lesions with an ulcer (62.1% vs. 35.0%, p\u2009<\u20090.001). Moreover, for lesions\u2009\u2264\u20093\u00a0cm, the accuracy of the EUS T stage was more affected by differentiation and location. The rate of overestimation was higher in undifferentiated-type lesions\u2009\u2264\u20092\u00a0cm (24.5% vs. 13.9%, p\u2009<\u20090.001) and 2\u20133\u00a0cm (33.3% vs. 25.7%, p\u2009=\u20090.011). In the differentiated type, the location affected the accuracy of the EUS T stage.ConclusionIn this hierarchical analysis, the rate of overestimation was higher in lesions\u2009>\u20093\u00a0cm with ulcer, lesions\u2009>\u20093\u00a0cm irrespective of ulcer, and undifferentiated-type lesions measuring 2\u20133\u00a0cm.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10620-020-06194-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018525", 
        "issn": [
          "0163-2116", 
          "1573-2568"
        ], 
        "name": "Digestive Diseases and Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "keywords": [
      "EUS T stage", 
      "EUS T-stage", 
      "rate of overestimation", 
      "T stage", 
      "undifferentiated-type lesions", 
      "gastric cancer", 
      "early gastric cancer patients", 
      "gastric cancer patients", 
      "T stage accuracy", 
      "cancer patients", 
      "T staging", 
      "endoscopic ultrasound", 
      "highest overestimation rate", 
      "treatment plan", 
      "ulcers", 
      "lesions", 
      "differentiated type", 
      "stage accuracy", 
      "decision tree analysis", 
      "overestimation rate", 
      "cancer", 
      "significant factor", 
      "patients", 
      "factors", 
      "group", 
      "ConclusionIn", 
      "staging", 
      "MethodsWe", 
      "rate", 
      "differentiation", 
      "ultrasound", 
      "stage", 
      "aim", 
      "CHAID method", 
      "tree analysis", 
      "hierarchical analysis", 
      "analysis", 
      "study", 
      "overestimation", 
      "location", 
      "variables", 
      "plan", 
      "types", 
      "characteristics", 
      "accuracy", 
      "size", 
      "method", 
      "interaction", 
      "EU", 
      "combinatorial characteristics"
    ], 
    "name": "Hierarchical Analysis of Factors Associated with T Staging of Gastric Cancer by Endoscopic Ultrasound", 
    "pagination": "612-618", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125708630"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10620-020-06194-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32185663"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10620-020-06194-6", 
      "https://app.dimensions.ai/details/publication/pub.1125708630"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_868.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10620-020-06194-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10620-020-06194-6'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      95 URIs      79 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10620-020-06194-6 schema:about N00f749e2ec9041e5a257e2b8cb190a96
2 N47f1a80b74e74d91ac6841209d64b4dc
3 N6b11185dcf5d45acbd5db069dcb73df1
4 N71ba86ee5a374e93a2f96f30088d0383
5 N7c48c070ecc84ee89133967dbd80903c
6 N8b89cfa4f1b84827b0c3e7f8c15ff7a2
7 N914c2c4efaab4bd08552052fba1e7ade
8 Nb6946ece24a34c89a7f9653fa505d50c
9 Ncbc6a7485a0b4e08883bb838f926e5b6
10 Nd48aa926902b4e379244366c173e111f
11 Nd7983ece519b4444a48354c3e33dc497
12 Nde208a63ad344f299b60bb605b2c24fb
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author Nc296db9217af4cdabeeecba8595b8f09
16 schema:citation sg:pub.10.1007/s00261-004-0287-z
17 sg:pub.10.1007/s00464-010-1112-0
18 sg:pub.10.1007/s00464-010-1279-4
19 sg:pub.10.1007/s00464-015-4728-2
20 sg:pub.10.1007/s00464-018-06621-w
21 sg:pub.10.1007/s00464-018-6104-5
22 sg:pub.10.1007/s10120-011-0002-z
23 sg:pub.10.1007/s10120-011-0041-5
24 schema:datePublished 2020-03-17
25 schema:datePublishedReg 2020-03-17
26 schema:description BackgroundSize, ulcer, differentiation, and location are known to be factors affecting the T stage accuracy of EUS in gastric cancer. However, whether an interaction exists among recognized variables is poorly understood. The aim of this study was to identify the combinatorial characteristics of group with high overestimation rate to determine which group should be considered carefully for EUS-based treatment plans.MethodsWe retrospectively analyzed early gastric cancer patients who underwent EUS from 2005 to 2016. The accuracy of EUS T stage and factors affecting over-/underestimation were examined by using decision tree analysis, the CHAID method.ResultsThe most significant factor affecting the accuracy of the EUS T stage was the size. The rate of overestimation was higher in lesions > 3 cm (37.2% vs. 28.8% vs. 17.1%, p < 0.001). In lesions > 3 cm, the rate of overestimation was higher in lesions with an ulcer (62.1% vs. 35.0%, p < 0.001). Moreover, for lesions ≤ 3 cm, the accuracy of the EUS T stage was more affected by differentiation and location. The rate of overestimation was higher in undifferentiated-type lesions ≤ 2 cm (24.5% vs. 13.9%, p < 0.001) and 2–3 cm (33.3% vs. 25.7%, p = 0.011). In the differentiated type, the location affected the accuracy of the EUS T stage.ConclusionIn this hierarchical analysis, the rate of overestimation was higher in lesions > 3 cm with ulcer, lesions > 3 cm irrespective of ulcer, and undifferentiated-type lesions measuring 2–3 cm.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf Naa363a7e915148e590456cd9ee365ef5
30 Ne648ceb39ca04e6388d2f897a1aa28a9
31 sg:journal.1018525
32 schema:keywords CHAID method
33 ConclusionIn
34 EU
35 EUS T stage
36 EUS T-stage
37 MethodsWe
38 T stage
39 T stage accuracy
40 T staging
41 accuracy
42 aim
43 analysis
44 cancer
45 cancer patients
46 characteristics
47 combinatorial characteristics
48 decision tree analysis
49 differentiated type
50 differentiation
51 early gastric cancer patients
52 endoscopic ultrasound
53 factors
54 gastric cancer
55 gastric cancer patients
56 group
57 hierarchical analysis
58 highest overestimation rate
59 interaction
60 lesions
61 location
62 method
63 overestimation
64 overestimation rate
65 patients
66 plan
67 rate
68 rate of overestimation
69 significant factor
70 size
71 stage
72 stage accuracy
73 staging
74 study
75 treatment plan
76 tree analysis
77 types
78 ulcers
79 ultrasound
80 undifferentiated-type lesions
81 variables
82 schema:name Hierarchical Analysis of Factors Associated with T Staging of Gastric Cancer by Endoscopic Ultrasound
83 schema:pagination 612-618
84 schema:productId N478c5b9b2d54473f8f88becb666fe035
85 N74113e707314433a9bda08fa7d7b5013
86 N9879f8728a2444f1a4ec74d1a766cf71
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125708630
88 https://doi.org/10.1007/s10620-020-06194-6
89 schema:sdDatePublished 2022-09-02T16:05
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N2279ceeef3bb4e068755ab16e609cc66
92 schema:url https://doi.org/10.1007/s10620-020-06194-6
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N00f749e2ec9041e5a257e2b8cb190a96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Deep Learning
98 rdf:type schema:DefinedTerm
99 N0bdd8453f3ba4f5f9bf98fd9a53f9560 rdf:first sg:person.016140575600.89
100 rdf:rest N60f8002026bf4c3faa7f2fcacbc7003c
101 N2279ceeef3bb4e068755ab16e609cc66 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N478c5b9b2d54473f8f88becb666fe035 schema:name pubmed_id
104 schema:value 32185663
105 rdf:type schema:PropertyValue
106 N47f1a80b74e74d91ac6841209d64b4dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Female
108 rdf:type schema:DefinedTerm
109 N60f8002026bf4c3faa7f2fcacbc7003c rdf:first sg:person.016035435043.00
110 rdf:rest rdf:nil
111 N6b11185dcf5d45acbd5db069dcb73df1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Neoplasm Staging
113 rdf:type schema:DefinedTerm
114 N71ba86ee5a374e93a2f96f30088d0383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Retrospective Studies
116 rdf:type schema:DefinedTerm
117 N74113e707314433a9bda08fa7d7b5013 schema:name dimensions_id
118 schema:value pub.1125708630
119 rdf:type schema:PropertyValue
120 N7c48c070ecc84ee89133967dbd80903c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aged
122 rdf:type schema:DefinedTerm
123 N8b89cfa4f1b84827b0c3e7f8c15ff7a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Early Detection of Cancer
125 rdf:type schema:DefinedTerm
126 N914c2c4efaab4bd08552052fba1e7ade schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Stomach Neoplasms
128 rdf:type schema:DefinedTerm
129 N9879f8728a2444f1a4ec74d1a766cf71 schema:name doi
130 schema:value 10.1007/s10620-020-06194-6
131 rdf:type schema:PropertyValue
132 Naa363a7e915148e590456cd9ee365ef5 schema:volumeNumber 66
133 rdf:type schema:PublicationVolume
134 Nb6946ece24a34c89a7f9653fa505d50c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Male
136 rdf:type schema:DefinedTerm
137 Nc296db9217af4cdabeeecba8595b8f09 rdf:first sg:person.01064772272.15
138 rdf:rest Nf3f50a7dc41144288d4bd4c0a3e22020
139 Ncbc6a7485a0b4e08883bb838f926e5b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 Nd48aa926902b4e379244366c173e111f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Middle Aged
144 rdf:type schema:DefinedTerm
145 Nd7301a1201ea437f8f1ff8029395083f rdf:first sg:person.015721010160.90
146 rdf:rest N0bdd8453f3ba4f5f9bf98fd9a53f9560
147 Nd7983ece519b4444a48354c3e33dc497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Decision Trees
149 rdf:type schema:DefinedTerm
150 Nde208a63ad344f299b60bb605b2c24fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Endosonography
152 rdf:type schema:DefinedTerm
153 Ne648ceb39ca04e6388d2f897a1aa28a9 schema:issueNumber 2
154 rdf:type schema:PublicationIssue
155 Nf3f50a7dc41144288d4bd4c0a3e22020 rdf:first sg:person.01051267505.19
156 rdf:rest Nd7301a1201ea437f8f1ff8029395083f
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
161 schema:name Oncology and Carcinogenesis
162 rdf:type schema:DefinedTerm
163 sg:journal.1018525 schema:issn 0163-2116
164 1573-2568
165 schema:name Digestive Diseases and Sciences
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01051267505.19 schema:affiliation grid-institutes:grid.31501.36
169 schema:familyName Chung
170 schema:givenName Hyunsoo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051267505.19
172 rdf:type schema:Person
173 sg:person.01064772272.15 schema:affiliation grid-institutes:grid.31501.36
174 schema:familyName Kim
175 schema:givenName Jung
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064772272.15
177 rdf:type schema:Person
178 sg:person.015721010160.90 schema:affiliation grid-institutes:grid.31501.36
179 schema:familyName Kim
180 schema:givenName Jue Lie
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721010160.90
182 rdf:type schema:Person
183 sg:person.016035435043.00 schema:affiliation grid-institutes:grid.31501.36
184 schema:familyName Kim
185 schema:givenName Sang Gyun
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00
187 rdf:type schema:Person
188 sg:person.016140575600.89 schema:affiliation grid-institutes:grid.31501.36
189 schema:familyName Lee
190 schema:givenName Eunwoo
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140575600.89
192 rdf:type schema:Person
193 sg:pub.10.1007/s00261-004-0287-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026952739
194 https://doi.org/10.1007/s00261-004-0287-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00464-010-1112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027687992
197 https://doi.org/10.1007/s00464-010-1112-0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00464-010-1279-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030575991
200 https://doi.org/10.1007/s00464-010-1279-4
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00464-015-4728-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002577490
203 https://doi.org/10.1007/s00464-015-4728-2
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00464-018-06621-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448669
206 https://doi.org/10.1007/s00464-018-06621-w
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00464-018-6104-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100993437
209 https://doi.org/10.1007/s00464-018-6104-5
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s10120-011-0002-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006720512
212 https://doi.org/10.1007/s10120-011-0002-z
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s10120-011-0041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016436945
215 https://doi.org/10.1007/s10120-011-0041-5
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.31501.36 schema:alternateName Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
218 schema:name Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...