Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-05

AUTHORS

Diego Almanza, Mehrnaz Gharaee-Kermani, Alisa Zhilin-Roth, Jose A. Rodriguez-Nieves, Cory Colaneri, Todd Riley, Jill A. Macoska

ABSTRACT

BACKGROUND: Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma. AIMS: In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma. METHODS: SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6 months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats. RESULTS: Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage. CONCLUSIONS: HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident. More... »

PAGES

1-13

References to SciGraph publications

  • 2018-09. Morphological and molecular characterization of the senile osteoporosis in senescence-accelerated mouse prone 6 (SAMP6) in MEDICAL MOLECULAR MORPHOLOGY
  • 2010-08. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67 in BREAST CANCER RESEARCH
  • 2005-08. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans in NATURE GENETICS
  • 2013-11. NAFLD, NASH and liver cancer in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2018-08. To die or not to die: death signaling in nonalcoholic fatty liver disease in JOURNAL OF GASTROENTEROLOGY
  • 2016-12. Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma in ONCOGENE
  • 2002-12. Initial sequencing and comparative analysis of the mouse genome in NATURE
  • 2016-06. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions in DIABETOLOGIA
  • 2013-04. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions in GENOME BIOLOGY
  • 2010-05. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation in NATURE BIOTECHNOLOGY
  • 2013-12. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes in BMC GENOMICS
  • 2013-01. Differential analysis of gene regulation at transcript resolution with RNA-seq in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10620-018-5398-4

    DOI

    http://dx.doi.org/10.1007/s10620-018-5398-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110402388

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30519850


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "Department of Biology, University of Massachusetts Boston, Boston, USA", 
                "Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., 02125, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Almanza", 
            "givenName": "Diego", 
            "id": "sg:person.012720344251.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720344251.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "Department of Biology, University of Massachusetts Boston, Boston, USA", 
                "Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., 02125, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gharaee-Kermani", 
            "givenName": "Mehrnaz", 
            "id": "sg:person.0644636410.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644636410.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "Department of Biology, University of Massachusetts Boston, Boston, USA", 
                "Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., 02125, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhilin-Roth", 
            "givenName": "Alisa", 
            "id": "sg:person.012561023711.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012561023711.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., 02125, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodriguez-Nieves", 
            "givenName": "Jose A.", 
            "id": "sg:person.01342027044.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342027044.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "Department of Biology, University of Massachusetts Boston, Boston, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Colaneri", 
            "givenName": "Cory", 
            "id": "sg:person.01250407040.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250407040.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "Department of Biology, University of Massachusetts Boston, Boston, USA", 
                "Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., 02125, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riley", 
            "givenName": "Todd", 
            "id": "sg:person.015107765215.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015107765215.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "Department of Biology, University of Massachusetts Boston, Boston, USA", 
                "Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., 02125, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Macoska", 
            "givenName": "Jill A.", 
            "id": "sg:person.01204152447.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204152447.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ajpath.2013.11.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000226316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001910376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/diabetes.50.8.1844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003096800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hep.23228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004300290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hep.20734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005023466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hep.20734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005023466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009493873", 
              "https://doi.org/10.1186/1471-2164-14-248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012425816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pros.2990240107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012690408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci119171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013979246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459845", 
              "https://doi.org/10.1186/gb-2013-14-4-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0057766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018269824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0122026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018631004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0122026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018631004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2016.162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019547906", 
              "https://doi.org/10.1038/onc.2016.162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hep.21467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020621048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(05)66378-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021290198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pros.22662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021671300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1204265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025790728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpgi.00447.2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029807351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030684933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030684933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035095", 
              "https://doi.org/10.1038/nbt.1621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-8278(00)80413-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032420685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039854529", 
              "https://doi.org/10.1038/nature01262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039854529", 
              "https://doi.org/10.1038/nature01262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040240632", 
              "https://doi.org/10.1186/bcr2615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040240632", 
              "https://doi.org/10.1186/bcr2615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/mp.51.4.204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041609939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/mp.51.4.204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041609939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijms17010030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043219601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1538/expanim.57.413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043572461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.metabol.2016.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043618306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0531-5565(96)00068-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043983795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044972799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.metabol.2016.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045076132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045152751", 
              "https://doi.org/10.1038/nbt.2450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0531-5565(96)00036-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045288581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/eci.12093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047121251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/943162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048920442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hep.26937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049992211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-016-3952-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050366649", 
              "https://doi.org/10.1007/s00125-016-3952-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-016-3952-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050366649", 
              "https://doi.org/10.1007/s00125-016-3952-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-016-3952-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050366649", 
              "https://doi.org/10.1007/s00125-016-3952-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mco.0b013e328342baec", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051259828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mco.0b013e328342baec", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051259828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2013.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051442552", 
              "https://doi.org/10.1038/nrgastro.2013.183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2559.2006.02416.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052140174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052297356", 
              "https://doi.org/10.1038/ng1599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052297356", 
              "https://doi.org/10.1038/ng1599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052297356", 
              "https://doi.org/10.1038/ng1599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1239303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052744398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-0032-1306421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057258464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3748/wjg.v18.i42.6005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071368781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3748/wjg.v20.i26.8325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071371085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3748/wjg.v21.i42.12059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071373157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4254/wjh.v8.i16.673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072403667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077320313", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077854470", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci92407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079398701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aan2507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091234304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00535-018-1451-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101746803", 
              "https://doi.org/10.1007/s00535-018-1451-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00535-018-1451-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101746803", 
              "https://doi.org/10.1007/s00535-018-1451-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00535-018-1451-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101746803", 
              "https://doi.org/10.1007/s00535-018-1451-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00795-018-0188-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103157899", 
              "https://doi.org/10.1007/s00795-018-0188-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00795-018-0188-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103157899", 
              "https://doi.org/10.1007/s00795-018-0188-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijms19051366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103843505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/jhc.s156701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105204727"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12-05", 
        "datePublishedReg": "2018-12-05", 
        "description": "BACKGROUND: Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma.\nAIMS: In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma.\nMETHODS: SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6\u00a0months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats.\nRESULTS: Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage.\nCONCLUSIONS: HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10620-018-5398-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2623364", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2438789", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018525", 
            "issn": [
              "0163-2116", 
              "1573-2568"
            ], 
            "name": "Digestive Diseases and Sciences", 
            "type": "Periodical"
          }
        ], 
        "name": "Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c837930f4f238a4b87abec10976c66e5aafe0faf46c4b07e980aec3263e3d365"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30519850"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7902782"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10620-018-5398-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110402388"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10620-018-5398-4", 
          "https://app.dimensions.ai/details/publication/pub.1110402388"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106292_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10620-018-5398-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10620-018-5398-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10620-018-5398-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10620-018-5398-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10620-018-5398-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      21 PREDICATES      81 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10620-018-5398-4 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nd321c863ced54709b14f4b264a7582ae
    4 schema:citation sg:pub.10.1007/s00125-016-3952-1
    5 sg:pub.10.1007/s00535-018-1451-5
    6 sg:pub.10.1007/s00795-018-0188-9
    7 sg:pub.10.1038/nature01262
    8 sg:pub.10.1038/nbt.1621
    9 sg:pub.10.1038/nbt.2450
    10 sg:pub.10.1038/ng1599
    11 sg:pub.10.1038/nrgastro.2013.183
    12 sg:pub.10.1038/onc.2016.162
    13 sg:pub.10.1186/1471-2164-14-248
    14 sg:pub.10.1186/bcr2615
    15 sg:pub.10.1186/gb-2013-14-4-r36
    16 https://app.dimensions.ai/details/publication/pub.1077320313
    17 https://app.dimensions.ai/details/publication/pub.1077854470
    18 https://doi.org/10.1002/hep.20734
    19 https://doi.org/10.1002/hep.21467
    20 https://doi.org/10.1002/hep.23228
    21 https://doi.org/10.1002/hep.26937
    22 https://doi.org/10.1002/pros.22662
    23 https://doi.org/10.1002/pros.2990240107
    24 https://doi.org/10.1016/j.ajpath.2013.11.024
    25 https://doi.org/10.1016/j.metabol.2016.05.003
    26 https://doi.org/10.1016/j.metabol.2016.12.006
    27 https://doi.org/10.1016/s0140-6736(05)66378-7
    28 https://doi.org/10.1016/s0168-8278(00)80413-4
    29 https://doi.org/10.1016/s0531-5565(96)00036-8
    30 https://doi.org/10.1016/s0531-5565(96)00068-x
    31 https://doi.org/10.1055/s-0032-1306421
    32 https://doi.org/10.1093/bioinformatics/btl567
    33 https://doi.org/10.1093/bioinformatics/btp101
    34 https://doi.org/10.1093/bioinformatics/btp120
    35 https://doi.org/10.1093/bioinformatics/btp616
    36 https://doi.org/10.1093/bioinformatics/btt285
    37 https://doi.org/10.1097/mco.0b013e328342baec
    38 https://doi.org/10.1101/gr.1239303
    39 https://doi.org/10.1111/eci.12093
    40 https://doi.org/10.1111/j.1365-2559.2006.02416.x
    41 https://doi.org/10.1126/science.1204265
    42 https://doi.org/10.1126/science.aan2507
    43 https://doi.org/10.1136/mp.51.4.204
    44 https://doi.org/10.1152/ajpgi.00447.2014
    45 https://doi.org/10.1155/2014/943162
    46 https://doi.org/10.1172/jci119171
    47 https://doi.org/10.1172/jci92407
    48 https://doi.org/10.1371/journal.pone.0057766
    49 https://doi.org/10.1371/journal.pone.0122026
    50 https://doi.org/10.1538/expanim.57.413
    51 https://doi.org/10.2147/jhc.s156701
    52 https://doi.org/10.2337/diabetes.50.8.1844
    53 https://doi.org/10.3390/ijms17010030
    54 https://doi.org/10.3390/ijms19051366
    55 https://doi.org/10.3748/wjg.v18.i42.6005
    56 https://doi.org/10.3748/wjg.v20.i26.8325
    57 https://doi.org/10.3748/wjg.v21.i42.12059
    58 https://doi.org/10.4254/wjh.v8.i16.673
    59 schema:datePublished 2018-12-05
    60 schema:datePublishedReg 2018-12-05
    61 schema:description BACKGROUND: Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma. AIMS: In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma. METHODS: SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6 months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats. RESULTS: Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage. CONCLUSIONS: HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree false
    65 schema:isPartOf sg:journal.1018525
    66 schema:name Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature
    67 schema:pagination 1-13
    68 schema:productId N1014d80cae63464aaf53a996258e4f8e
    69 N10f20c7508f8436eb2ec39b1c03346d4
    70 N461cc1f154e44258ae17ebbfdf0208c0
    71 Nb62335b0fcc44bfabcc478bdbf7b6ff4
    72 Nd34332ac0ba04223b576bd74c4c1440b
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110402388
    74 https://doi.org/10.1007/s10620-018-5398-4
    75 schema:sdDatePublished 2019-04-11T08:32
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N34e5e8a34d9843118870f010be6a3ed4
    78 schema:url https://link.springer.com/10.1007%2Fs10620-018-5398-4
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N007d4643511c4d1b8aea76cc0ddcfa5d rdf:first sg:person.015107765215.81
    83 rdf:rest N8f46d70cf40c497fa61d5e3030659577
    84 N07c0d1106bcf414b829c20eb2768ab85 rdf:first sg:person.012561023711.00
    85 rdf:rest N9e43c88fccd842fbb763eaf6b1e5bda1
    86 N1014d80cae63464aaf53a996258e4f8e schema:name pubmed_id
    87 schema:value 30519850
    88 rdf:type schema:PropertyValue
    89 N10f20c7508f8436eb2ec39b1c03346d4 schema:name dimensions_id
    90 schema:value pub.1110402388
    91 rdf:type schema:PropertyValue
    92 N34e5e8a34d9843118870f010be6a3ed4 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N461cc1f154e44258ae17ebbfdf0208c0 schema:name doi
    95 schema:value 10.1007/s10620-018-5398-4
    96 rdf:type schema:PropertyValue
    97 N4a33594204e94882867acc49a3717bf6 rdf:first sg:person.01250407040.89
    98 rdf:rest N007d4643511c4d1b8aea76cc0ddcfa5d
    99 N78349e66cdac47709c32852b3a9fa546 rdf:first sg:person.0644636410.30
    100 rdf:rest N07c0d1106bcf414b829c20eb2768ab85
    101 N8f46d70cf40c497fa61d5e3030659577 rdf:first sg:person.01204152447.20
    102 rdf:rest rdf:nil
    103 N9e43c88fccd842fbb763eaf6b1e5bda1 rdf:first sg:person.01342027044.45
    104 rdf:rest N4a33594204e94882867acc49a3717bf6
    105 Nb62335b0fcc44bfabcc478bdbf7b6ff4 schema:name nlm_unique_id
    106 schema:value 7902782
    107 rdf:type schema:PropertyValue
    108 Nd321c863ced54709b14f4b264a7582ae rdf:first sg:person.012720344251.64
    109 rdf:rest N78349e66cdac47709c32852b3a9fa546
    110 Nd34332ac0ba04223b576bd74c4c1440b schema:name readcube_id
    111 schema:value c837930f4f238a4b87abec10976c66e5aafe0faf46c4b07e980aec3263e3d365
    112 rdf:type schema:PropertyValue
    113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Biological Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Genetics
    118 rdf:type schema:DefinedTerm
    119 sg:grant.2438789 http://pending.schema.org/fundedItem sg:pub.10.1007/s10620-018-5398-4
    120 rdf:type schema:MonetaryGrant
    121 sg:grant.2623364 http://pending.schema.org/fundedItem sg:pub.10.1007/s10620-018-5398-4
    122 rdf:type schema:MonetaryGrant
    123 sg:journal.1018525 schema:issn 0163-2116
    124 1573-2568
    125 schema:name Digestive Diseases and Sciences
    126 rdf:type schema:Periodical
    127 sg:person.01204152447.20 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    128 schema:familyName Macoska
    129 schema:givenName Jill A.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204152447.20
    131 rdf:type schema:Person
    132 sg:person.01250407040.89 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    133 schema:familyName Colaneri
    134 schema:givenName Cory
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250407040.89
    136 rdf:type schema:Person
    137 sg:person.012561023711.00 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    138 schema:familyName Zhilin-Roth
    139 schema:givenName Alisa
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012561023711.00
    141 rdf:type schema:Person
    142 sg:person.012720344251.64 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    143 schema:familyName Almanza
    144 schema:givenName Diego
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012720344251.64
    146 rdf:type schema:Person
    147 sg:person.01342027044.45 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    148 schema:familyName Rodriguez-Nieves
    149 schema:givenName Jose A.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342027044.45
    151 rdf:type schema:Person
    152 sg:person.015107765215.81 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    153 schema:familyName Riley
    154 schema:givenName Todd
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015107765215.81
    156 rdf:type schema:Person
    157 sg:person.0644636410.30 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    158 schema:familyName Gharaee-Kermani
    159 schema:givenName Mehrnaz
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644636410.30
    161 rdf:type schema:Person
    162 sg:pub.10.1007/s00125-016-3952-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050366649
    163 https://doi.org/10.1007/s00125-016-3952-1
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00535-018-1451-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101746803
    166 https://doi.org/10.1007/s00535-018-1451-5
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00795-018-0188-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103157899
    169 https://doi.org/10.1007/s00795-018-0188-9
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature01262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039854529
    172 https://doi.org/10.1038/nature01262
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
    175 https://doi.org/10.1038/nbt.1621
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nbt.2450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045152751
    178 https://doi.org/10.1038/nbt.2450
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ng1599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052297356
    181 https://doi.org/10.1038/ng1599
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nrgastro.2013.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051442552
    184 https://doi.org/10.1038/nrgastro.2013.183
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/onc.2016.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547906
    187 https://doi.org/10.1038/onc.2016.162
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/1471-2164-14-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009493873
    190 https://doi.org/10.1186/1471-2164-14-248
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/bcr2615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040240632
    193 https://doi.org/10.1186/bcr2615
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
    196 https://doi.org/10.1186/gb-2013-14-4-r36
    197 rdf:type schema:CreativeWork
    198 https://app.dimensions.ai/details/publication/pub.1077320313 schema:CreativeWork
    199 https://app.dimensions.ai/details/publication/pub.1077854470 schema:CreativeWork
    200 https://doi.org/10.1002/hep.20734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005023466
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1002/hep.21467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020621048
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1002/hep.23228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004300290
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1002/hep.26937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049992211
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1002/pros.22662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021671300
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1002/pros.2990240107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012690408
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.ajpath.2013.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000226316
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.metabol.2016.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045076132
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.metabol.2016.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618306
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0140-6736(05)66378-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021290198
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/s0168-8278(00)80413-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032420685
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/s0531-5565(96)00036-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045288581
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/s0531-5565(96)00068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043983795
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1055/s-0032-1306421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057258464
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1093/bioinformatics/btl567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044972799
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/bioinformatics/btp101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001910376
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/bioinformatics/btt285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030684933
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1097/mco.0b013e328342baec schema:sameAs https://app.dimensions.ai/details/publication/pub.1051259828
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1111/eci.12093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047121251
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1111/j.1365-2559.2006.02416.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052140174
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1126/science.1204265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025790728
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1126/science.aan2507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091234304
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1136/mp.51.4.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041609939
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1152/ajpgi.00447.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029807351
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1155/2014/943162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048920442
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1172/jci119171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013979246
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1172/jci92407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079398701
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1371/journal.pone.0057766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018269824
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1371/journal.pone.0122026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018631004
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1538/expanim.57.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043572461
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.2147/jhc.s156701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105204727
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.2337/diabetes.50.8.1844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003096800
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.3390/ijms17010030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043219601
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.3390/ijms19051366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103843505
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.3748/wjg.v18.i42.6005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071368781
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.3748/wjg.v20.i26.8325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071371085
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.3748/wjg.v21.i42.12059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071373157
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.4254/wjh.v8.i16.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072403667
    281 rdf:type schema:CreativeWork
    282 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
    283 schema:name Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., 02125, Boston, MA, USA
    284 Department of Biology, University of Massachusetts Boston, Boston, USA
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...