Gene Expression Profiling of Human Gastrointestinal Stromal Tumors According to Its Malignant Potential View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

Keun Hur, Hyuk-Joon Lee, Jung Hoon Woo, Ju Han Kim, Han-Kwang Yang

ABSTRACT

PURPOSE: Surgical removal or treatment with Imatinib mesylate (STI-571/Gleevec) is shown to be highly effective in gastrointestinal stromal tumors (GISTs). However, it is unclear the understanding of the molecular basis in GISTs according to its malignant potential. The aim of this study was therefore to determine the gene expression profiles according to GISTs risk progresses. RESULTS: In this study, we performed a cDNA microarray with 30 human GIST tissues using the Mac Array-Express 10K chip (10,800 genes), and compared their gene expression profiles among low (n=10), intermediate (n=8), and high-risk groups (n=12) according to NIH consensus criteria. A total of 181 genes were identified to be expressed differentially according to GISTs risk category. After clustering by self-organizing maps, the expression profiles of 32 genes sequentially increased as the tumor risk increased, and those of 37 genes sequentially decreased as the tumor risk increased. Identified targets have been cross referenced against their involvements in different cellular pathways, according to GenMAPP, KEGG, and BioCarta. In pathway-enrichment analysis, eight up-regulated pathways and ten down-regulated pathways were significantly enriched. CONCLUSIONS: Our results showed a remarkably distinct and uniform expression pattern in GISTs progression. Moreover, the expression profiling of GISTs may be used as a basic reference to better understand the molecular basis of GISTs tumorigenesis and to identify a novel target molecule for replacing KIT and PDGFRA for a complementary diagnosis and effective curative treatments. More... »

PAGES

2561-2567

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10620-009-1061-4

DOI

http://dx.doi.org/10.1007/s10620-009-1061-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042788855

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20108043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Stromal Tumors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Precision Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hur", 
        "givenName": "Keun", 
        "id": "sg:person.01141604530.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141604530.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Surgery, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hyuk-Joon", 
        "id": "sg:person.011242043254.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242043254.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woo", 
        "givenName": "Jung Hoon", 
        "id": "sg:person.0620134203.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620134203.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ju Han", 
        "id": "sg:person.01366060044.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366060044.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Surgery, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Han-Kwang", 
        "id": "sg:person.015267175234.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015267175234.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1158/0008-5472.can-04-0085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020932239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa020461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022255922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026029796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200104053441404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026751453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200104053441401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026812584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004280000338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027401391", 
          "https://doi.org/10.1007/s004280000338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97610-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174751", 
          "https://doi.org/10.1007/978-3-642-97610-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97610-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174751", 
          "https://doi.org/10.1007/978-3-642-97610-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)08270-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036340611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-03-0715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037403834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(01)06535-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038004584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(02)00836-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039677991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(02)00836-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039677991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/hupa.2002.123545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039925107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2003.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040640515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042100427", 
          "https://doi.org/10.1038/sj.onc.1208056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042100427", 
          "https://doi.org/10.1038/sj.onc.1208056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.4.e15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045723576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5350.577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049612615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1079666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.05.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082959547", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083261771", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "PURPOSE: Surgical removal or treatment with Imatinib mesylate (STI-571/Gleevec) is shown to be highly effective in gastrointestinal stromal tumors (GISTs). However, it is unclear the understanding of the molecular basis in GISTs according to its malignant potential. The aim of this study was therefore to determine the gene expression profiles according to GISTs risk progresses.\nRESULTS: In this study, we performed a cDNA microarray with 30 human GIST tissues using the Mac Array-Express 10K chip (10,800 genes), and compared their gene expression profiles among low (n=10), intermediate (n=8), and high-risk groups (n=12) according to NIH consensus criteria. A total of 181 genes were identified to be expressed differentially according to GISTs risk category. After clustering by self-organizing maps, the expression profiles of 32 genes sequentially increased as the tumor risk increased, and those of 37 genes sequentially decreased as the tumor risk increased. Identified targets have been cross referenced against their involvements in different cellular pathways, according to GenMAPP, KEGG, and BioCarta. In pathway-enrichment analysis, eight up-regulated pathways and ten down-regulated pathways were significantly enriched.\nCONCLUSIONS: Our results showed a remarkably distinct and uniform expression pattern in GISTs progression. Moreover, the expression profiling of GISTs may be used as a basic reference to better understand the molecular basis of GISTs tumorigenesis and to identify a novel target molecule for replacing KIT and PDGFRA for a complementary diagnosis and effective curative treatments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10620-009-1061-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018525", 
        "issn": [
          "0163-2116", 
          "1573-2568"
        ], 
        "name": "Digestive Diseases and Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Gene Expression Profiling of Human Gastrointestinal Stromal Tumors According to Its Malignant Potential", 
    "pagination": "2561-2567", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cbd243dfc268644f00eb15339f99df3d4e49db5c3dd8729808bd275e19bceb9b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20108043"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7902782"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10620-009-1061-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042788855"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10620-009-1061-4", 
      "https://app.dimensions.ai/details/publication/pub.1042788855"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10620-009-1061-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10620-009-1061-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10620-009-1061-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10620-009-1061-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10620-009-1061-4'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      69 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10620-009-1061-4 schema:about N131ddb95397d4eeba4978815580bf6fd
2 N1750e30768484778a6a1dc823ed0b194
3 N182e94686ee7480bb8853077ac1a2b7e
4 N227e13f71f0b4033bb2ed93019652057
5 N22ffe38a1a7e48c2a7e466589810a877
6 N35750db7e92542718f495e523add71b6
7 N41df964bf43b489b8114136a8c89ebfa
8 N53716baee70b444ebe9cbfdadaea809a
9 N57283608eb6e4068aed8539fd61afc6d
10 N6060c43e6a314ec38db65448bf411445
11 N6dfee1abbfa24b51aefeeb4a0d6f604d
12 N6e0621b9aa57446ca68e04d5c4dd2969
13 N8eb80ea0b5e04cd9ba4e6a4ed9bb2f8c
14 N969cf8af586a49a580c51d04ee5b99d9
15 N9776c72db3b5470285cce1b7ae45f0e7
16 Nace1960e2f8d4ec1bc5860b701ccf2a3
17 Nc7da68c4e4d5443c99cb97461a2d0b51
18 Ne764732d2b6940328a4b88a58b6dd932
19 Nea76144510e944c1988adb6e5df48e96
20 Nfdf69de5e14049878af211b3abd1fe9b
21 anzsrc-for:06
22 anzsrc-for:0604
23 schema:author Nb760f5c422d94d498b1bd1c6a32cbb5f
24 schema:citation sg:pub.10.1007/978-3-642-97610-0
25 sg:pub.10.1007/s004280000338
26 sg:pub.10.1038/sj.onc.1208056
27 https://app.dimensions.ai/details/publication/pub.1082959547
28 https://app.dimensions.ai/details/publication/pub.1083261771
29 https://doi.org/10.1016/j.ejca.2003.11.025
30 https://doi.org/10.1016/s0140-6736(01)06535-7
31 https://doi.org/10.1016/s0140-6736(02)08270-3
32 https://doi.org/10.1016/s0959-8049(02)00836-5
33 https://doi.org/10.1053/hupa.2002.123545
34 https://doi.org/10.1056/nejm200104053441401
35 https://doi.org/10.1056/nejm200104053441404
36 https://doi.org/10.1056/nejmoa020461
37 https://doi.org/10.1093/bioinformatics/18.suppl_1.s96
38 https://doi.org/10.1093/nar/30.4.e15
39 https://doi.org/10.1126/science.1079666
40 https://doi.org/10.1126/science.279.5350.577
41 https://doi.org/10.1158/0008-5472.can-04-0085
42 https://doi.org/10.1158/1078-0432.ccr-03-0715
43 https://doi.org/10.1200/jco.2004.05.140
44 schema:datePublished 2010-09
45 schema:datePublishedReg 2010-09-01
46 schema:description PURPOSE: Surgical removal or treatment with Imatinib mesylate (STI-571/Gleevec) is shown to be highly effective in gastrointestinal stromal tumors (GISTs). However, it is unclear the understanding of the molecular basis in GISTs according to its malignant potential. The aim of this study was therefore to determine the gene expression profiles according to GISTs risk progresses. RESULTS: In this study, we performed a cDNA microarray with 30 human GIST tissues using the Mac Array-Express 10K chip (10,800 genes), and compared their gene expression profiles among low (n=10), intermediate (n=8), and high-risk groups (n=12) according to NIH consensus criteria. A total of 181 genes were identified to be expressed differentially according to GISTs risk category. After clustering by self-organizing maps, the expression profiles of 32 genes sequentially increased as the tumor risk increased, and those of 37 genes sequentially decreased as the tumor risk increased. Identified targets have been cross referenced against their involvements in different cellular pathways, according to GenMAPP, KEGG, and BioCarta. In pathway-enrichment analysis, eight up-regulated pathways and ten down-regulated pathways were significantly enriched. CONCLUSIONS: Our results showed a remarkably distinct and uniform expression pattern in GISTs progression. Moreover, the expression profiling of GISTs may be used as a basic reference to better understand the molecular basis of GISTs tumorigenesis and to identify a novel target molecule for replacing KIT and PDGFRA for a complementary diagnosis and effective curative treatments.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N0399b386677a427eb26413e2c2e2b5bf
51 N0d6e856097004fb28c18d486a736715b
52 sg:journal.1018525
53 schema:name Gene Expression Profiling of Human Gastrointestinal Stromal Tumors According to Its Malignant Potential
54 schema:pagination 2561-2567
55 schema:productId N2363db7dd9f44621b684f2243ab54b25
56 N3c95bc1297b64abdae8df916870e48a8
57 N7772109e28204c70ab72b3cd9fdcb22d
58 Nb4211e465cda4129a1395e65c93714f1
59 Nb95a5950c7e647c1a8c8ef5ede3f0d34
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042788855
61 https://doi.org/10.1007/s10620-009-1061-4
62 schema:sdDatePublished 2019-04-11T09:49
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N0ccf3ad5deb2483496910871b0868acd
65 schema:url http://link.springer.com/10.1007/s10620-009-1061-4
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0399b386677a427eb26413e2c2e2b5bf schema:volumeNumber 55
70 rdf:type schema:PublicationVolume
71 N0ccf3ad5deb2483496910871b0868acd schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N0d6e856097004fb28c18d486a736715b schema:issueNumber 9
74 rdf:type schema:PublicationIssue
75 N131ddb95397d4eeba4978815580bf6fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Biomarkers, Tumor
77 rdf:type schema:DefinedTerm
78 N1750e30768484778a6a1dc823ed0b194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Humans
80 rdf:type schema:DefinedTerm
81 N182e94686ee7480bb8853077ac1a2b7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Female
83 rdf:type schema:DefinedTerm
84 N227e13f71f0b4033bb2ed93019652057 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Male
86 rdf:type schema:DefinedTerm
87 N22ffe38a1a7e48c2a7e466589810a877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Prognosis
89 rdf:type schema:DefinedTerm
90 N2363db7dd9f44621b684f2243ab54b25 schema:name doi
91 schema:value 10.1007/s10620-009-1061-4
92 rdf:type schema:PropertyValue
93 N2691ffe4b52e449e88e19bf685784b99 rdf:first sg:person.011242043254.34
94 rdf:rest N4e6c8c4c65e34d05a40ffb1bacf33582
95 N3158499d64fc489c8fbe3d450131f58c rdf:first sg:person.015267175234.94
96 rdf:rest rdf:nil
97 N35750db7e92542718f495e523add71b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Risk Assessment
99 rdf:type schema:DefinedTerm
100 N3c95bc1297b64abdae8df916870e48a8 schema:name readcube_id
101 schema:value cbd243dfc268644f00eb15339f99df3d4e49db5c3dd8729808bd275e19bceb9b
102 rdf:type schema:PropertyValue
103 N41df964bf43b489b8114136a8c89ebfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Gene Expression Regulation, Neoplastic
105 rdf:type schema:DefinedTerm
106 N4e6c8c4c65e34d05a40ffb1bacf33582 rdf:first sg:person.0620134203.78
107 rdf:rest N8bb02d515d2d43d3b81f87a59175bbb5
108 N53716baee70b444ebe9cbfdadaea809a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Gene Regulatory Networks
110 rdf:type schema:DefinedTerm
111 N57283608eb6e4068aed8539fd61afc6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Middle Aged
113 rdf:type schema:DefinedTerm
114 N6060c43e6a314ec38db65448bf411445 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Predictive Value of Tests
116 rdf:type schema:DefinedTerm
117 N6dfee1abbfa24b51aefeeb4a0d6f604d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Precision Medicine
119 rdf:type schema:DefinedTerm
120 N6e0621b9aa57446ca68e04d5c4dd2969 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Neoplasm Staging
122 rdf:type schema:DefinedTerm
123 N7772109e28204c70ab72b3cd9fdcb22d schema:name pubmed_id
124 schema:value 20108043
125 rdf:type schema:PropertyValue
126 N8bb02d515d2d43d3b81f87a59175bbb5 rdf:first sg:person.01366060044.84
127 rdf:rest N3158499d64fc489c8fbe3d450131f58c
128 N8eb80ea0b5e04cd9ba4e6a4ed9bb2f8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Adult
130 rdf:type schema:DefinedTerm
131 N969cf8af586a49a580c51d04ee5b99d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Risk Factors
133 rdf:type schema:DefinedTerm
134 N9776c72db3b5470285cce1b7ae45f0e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Aged, 80 and over
136 rdf:type schema:DefinedTerm
137 Nace1960e2f8d4ec1bc5860b701ccf2a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Aged
139 rdf:type schema:DefinedTerm
140 Nb4211e465cda4129a1395e65c93714f1 schema:name nlm_unique_id
141 schema:value 7902782
142 rdf:type schema:PropertyValue
143 Nb760f5c422d94d498b1bd1c6a32cbb5f rdf:first sg:person.01141604530.75
144 rdf:rest N2691ffe4b52e449e88e19bf685784b99
145 Nb95a5950c7e647c1a8c8ef5ede3f0d34 schema:name dimensions_id
146 schema:value pub.1042788855
147 rdf:type schema:PropertyValue
148 Nc7da68c4e4d5443c99cb97461a2d0b51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Cluster Analysis
150 rdf:type schema:DefinedTerm
151 Ne764732d2b6940328a4b88a58b6dd932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Oligonucleotide Array Sequence Analysis
153 rdf:type schema:DefinedTerm
154 Nea76144510e944c1988adb6e5df48e96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Gene Expression Profiling
156 rdf:type schema:DefinedTerm
157 Nfdf69de5e14049878af211b3abd1fe9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Gastrointestinal Stromal Tumors
159 rdf:type schema:DefinedTerm
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:journal.1018525 schema:issn 0163-2116
167 1573-2568
168 schema:name Digestive Diseases and Sciences
169 rdf:type schema:Periodical
170 sg:person.011242043254.34 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
171 schema:familyName Lee
172 schema:givenName Hyuk-Joon
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242043254.34
174 rdf:type schema:Person
175 sg:person.01141604530.75 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
176 schema:familyName Hur
177 schema:givenName Keun
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141604530.75
179 rdf:type schema:Person
180 sg:person.01366060044.84 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
181 schema:familyName Kim
182 schema:givenName Ju Han
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366060044.84
184 rdf:type schema:Person
185 sg:person.015267175234.94 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
186 schema:familyName Yang
187 schema:givenName Han-Kwang
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015267175234.94
189 rdf:type schema:Person
190 sg:person.0620134203.78 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
191 schema:familyName Woo
192 schema:givenName Jung Hoon
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620134203.78
194 rdf:type schema:Person
195 sg:pub.10.1007/978-3-642-97610-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174751
196 https://doi.org/10.1007/978-3-642-97610-0
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s004280000338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027401391
199 https://doi.org/10.1007/s004280000338
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/sj.onc.1208056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042100427
202 https://doi.org/10.1038/sj.onc.1208056
203 rdf:type schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1082959547 schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1083261771 schema:CreativeWork
206 https://doi.org/10.1016/j.ejca.2003.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040640515
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0140-6736(01)06535-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038004584
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0140-6736(02)08270-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036340611
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0959-8049(02)00836-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039677991
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1053/hupa.2002.123545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039925107
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1056/nejm200104053441401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026812584
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1056/nejm200104053441404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026751453
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1056/nejmoa020461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022255922
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/bioinformatics/18.suppl_1.s96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026029796
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/nar/30.4.e15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723576
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1079666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447255
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.279.5350.577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049612615
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1158/0008-5472.can-04-0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020932239
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1158/1078-0432.ccr-03-0715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037403834
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1200/jco.2004.05.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204176
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
237 schema:name Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea
238 Department of Surgery, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea
239 Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, Republic of Korea
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...