Domain agnostic online semantic segmentation for multi-dimensional time series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Shaghayegh Gharghabi, Chin-Chia Michael Yeh, Yifei Ding, Wei Ding, Paul Hibbing, Samuel LaMunion, Andrew Kaplan, Scott E. Crouter, Eamonn Keogh

ABSTRACT

Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions. More... »

PAGES

96-130

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3

DOI

http://dx.doi.org/10.1007/s10618-018-0589-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107223526

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30828258


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gharghabi", 
        "givenName": "Shaghayegh", 
        "id": "sg:person.013363132563.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363132563.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeh", 
        "givenName": "Chin-Chia Michael", 
        "id": "sg:person.010502410405.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010502410405.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yifei", 
        "id": "sg:person.014406532055.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406532055.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Computer Science, University of Massachusetts Boston, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Wei", 
        "id": "sg:person.0754336354.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754336354.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hibbing", 
        "givenName": "Paul", 
        "id": "sg:person.01133131263.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133131263.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaMunion", 
        "givenName": "Samuel", 
        "id": "sg:person.010574762741.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574762741.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaplan", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crouter", 
        "givenName": "Scott E.", 
        "id": "sg:person.01367413330.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367413330.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keogh", 
        "givenName": "Eamonn", 
        "id": "sg:person.01125714074.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125714074.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2588555.2588556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002478232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10163-003-0086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002684991", 
          "https://doi.org/10.1007/s10163-003-0086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e31820ce174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004883363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e31820ce174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004883363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-015-0415-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004951690", 
          "https://doi.org/10.1007/s10618-015-0415-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2983323.2983855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005043855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74997-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008215056", 
          "https://doi.org/10.1007/978-3-540-74997-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74997-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008215056", 
          "https://doi.org/10.1007/978-3-540-74997-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fneur.2013.00200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2487575.2487634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011632045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2528282.2528315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014485188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04394-9_91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016848699", 
          "https://doi.org/10.1007/978-3-642-04394-9_91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00024-016-1284-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022608902", 
          "https://doi.org/10.1007/s00024-016-1284-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2556288.2557116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023529520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024988512476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028077491", 
          "https://doi.org/10.1023/a:1024988512476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(94)90561-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028210518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0000000000000502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036200033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0000000000000502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036200033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e3182a42a2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038377939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e3182a42a2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038377939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-013-0902-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044041179", 
          "https://doi.org/10.1007/s00371-013-0902-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1989323.1989364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048847919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-016-0987-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053043091", 
          "https://doi.org/10.1007/s10115-016-0987-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-016-0987-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053043091", 
          "https://doi.org/10.1007/s10115-016-0987-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2013.849605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.589216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/thms.2015.2493536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061615004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2014.2310701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1123/jpah.10.3.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062426608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083115866", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2016.7591400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084498496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812565402_0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088718252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-12401-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091925069", 
          "https://doi.org/10.1038/s41598-017-12401-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpads.2015.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093249971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2014.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093890045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cic.2003.1291141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094262949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2009.5413671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094297919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wacv.2016.7477722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094587142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1997.609382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094788308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iswc.2012.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095140883"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10618-018-0589-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4318618", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5244287", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4179617", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041853", 
        "issn": [
          "1384-5810", 
          "1573-756X"
        ], 
        "name": "Data Mining and Knowledge Discovery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Domain agnostic online semantic segmentation for multi-dimensional time series", 
    "pagination": "96-130", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d66df54efbd3bced090d4fd1898c42d6a1b3d389bea5e0ad93c5a717548dc42"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30828258"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101512456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10618-018-0589-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107223526"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10618-018-0589-3", 
      "https://app.dimensions.ai/details/publication/pub.1107223526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57868_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10618-018-0589-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10618-018-0589-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N67caa218537e4f79ad1ecbcbf51ad83a
4 schema:citation sg:pub.10.1007/978-3-540-74997-4_4
5 sg:pub.10.1007/978-3-642-04394-9_91
6 sg:pub.10.1007/s00024-016-1284-1
7 sg:pub.10.1007/s00371-013-0902-5
8 sg:pub.10.1007/s10115-016-0987-z
9 sg:pub.10.1007/s10163-003-0086-6
10 sg:pub.10.1007/s10618-015-0415-0
11 sg:pub.10.1023/a:1024988512476
12 sg:pub.10.1038/s41598-017-12401-8
13 https://app.dimensions.ai/details/publication/pub.1083115866
14 https://doi.org/10.1016/0002-8703(94)90561-4
15 https://doi.org/10.1080/01621459.2013.849605
16 https://doi.org/10.1109/34.589216
17 https://doi.org/10.1109/cic.2003.1291141
18 https://doi.org/10.1109/cvpr.1997.609382
19 https://doi.org/10.1109/embc.2016.7591400
20 https://doi.org/10.1109/icdm.2014.62
21 https://doi.org/10.1109/icip.2009.5413671
22 https://doi.org/10.1109/icpads.2015.23
23 https://doi.org/10.1109/iswc.2012.13
24 https://doi.org/10.1109/thms.2015.2493536
25 https://doi.org/10.1109/tmm.2014.2310701
26 https://doi.org/10.1109/wacv.2016.7477722
27 https://doi.org/10.1123/jpah.10.3.437
28 https://doi.org/10.1142/9789812565402_0001
29 https://doi.org/10.1145/1989323.1989364
30 https://doi.org/10.1145/2487575.2487634
31 https://doi.org/10.1145/2528282.2528315
32 https://doi.org/10.1145/2556288.2557116
33 https://doi.org/10.1145/2588555.2588556
34 https://doi.org/10.1145/2983323.2983855
35 https://doi.org/10.1249/mss.0000000000000502
36 https://doi.org/10.1249/mss.0b013e31820ce174
37 https://doi.org/10.1249/mss.0b013e3182a42a2d
38 https://doi.org/10.3389/fneur.2013.00200
39 schema:datePublished 2019-01
40 schema:datePublishedReg 2019-01-01
41 schema:description Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N1cc5544912db4cb49a3e62af822ee398
46 N3b112ef7d2834b9d8ebd7b40df3e8249
47 sg:journal.1041853
48 schema:name Domain agnostic online semantic segmentation for multi-dimensional time series
49 schema:pagination 96-130
50 schema:productId N1b20168240b04fe7931c83ec894126e8
51 N578023a4063c4e0585c39dcc2a7a14ba
52 Nb9f2dfef8288460886553b318e72e02f
53 Nbff8c62538ee49949e47a2721addc9ce
54 Nec6878f4c19b4f48897b8a5daa801afb
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107223526
56 https://doi.org/10.1007/s10618-018-0589-3
57 schema:sdDatePublished 2019-04-11T11:25
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N6a2d55adbac44d0487d29f5858d471c4
60 schema:url https://link.springer.com/10.1007%2Fs10618-018-0589-3
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0c3e61752a094a44b9b97d5b7c51d95f rdf:first sg:person.01125714074.34
65 rdf:rest rdf:nil
66 N1b20168240b04fe7931c83ec894126e8 schema:name doi
67 schema:value 10.1007/s10618-018-0589-3
68 rdf:type schema:PropertyValue
69 N1cc5544912db4cb49a3e62af822ee398 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N3b112ef7d2834b9d8ebd7b40df3e8249 schema:volumeNumber 33
72 rdf:type schema:PublicationVolume
73 N55a1820773274e5bb7d9ae93736de4e4 rdf:first sg:person.01367413330.59
74 rdf:rest N0c3e61752a094a44b9b97d5b7c51d95f
75 N578023a4063c4e0585c39dcc2a7a14ba schema:name nlm_unique_id
76 schema:value 101512456
77 rdf:type schema:PropertyValue
78 N5ab1296e7f45472f8a17a8f78d99d04b rdf:first sg:person.01133131263.05
79 rdf:rest Ne1ad300dbeb64b85b3c90bb1d65222eb
80 N67caa218537e4f79ad1ecbcbf51ad83a rdf:first sg:person.013363132563.35
81 rdf:rest Nb1d42f6f34384a65aa8be0f3326670ba
82 N6a2d55adbac44d0487d29f5858d471c4 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N77c2426a1c9e4f2bb0b8e7af3e840978 rdf:first N9419dca90e7f400aaa7adcfbac2a2db5
85 rdf:rest N55a1820773274e5bb7d9ae93736de4e4
86 N9419dca90e7f400aaa7adcfbac2a2db5 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
87 schema:familyName Kaplan
88 schema:givenName Andrew
89 rdf:type schema:Person
90 Nb1d42f6f34384a65aa8be0f3326670ba rdf:first sg:person.010502410405.19
91 rdf:rest Nfed53a7cb8824a13b5bbf26368aee39c
92 Nb9f2dfef8288460886553b318e72e02f schema:name dimensions_id
93 schema:value pub.1107223526
94 rdf:type schema:PropertyValue
95 Nbff8c62538ee49949e47a2721addc9ce schema:name pubmed_id
96 schema:value 30828258
97 rdf:type schema:PropertyValue
98 Nda93d42f86dc4ee28e1f7c07ae475fbd rdf:first sg:person.0754336354.16
99 rdf:rest N5ab1296e7f45472f8a17a8f78d99d04b
100 Ne1ad300dbeb64b85b3c90bb1d65222eb rdf:first sg:person.010574762741.50
101 rdf:rest N77c2426a1c9e4f2bb0b8e7af3e840978
102 Nec6878f4c19b4f48897b8a5daa801afb schema:name readcube_id
103 schema:value 3d66df54efbd3bced090d4fd1898c42d6a1b3d389bea5e0ad93c5a717548dc42
104 rdf:type schema:PropertyValue
105 Nfed53a7cb8824a13b5bbf26368aee39c rdf:first sg:person.014406532055.47
106 rdf:rest Nda93d42f86dc4ee28e1f7c07ae475fbd
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:grant.4179617 http://pending.schema.org/fundedItem sg:pub.10.1007/s10618-018-0589-3
114 rdf:type schema:MonetaryGrant
115 sg:grant.4318618 http://pending.schema.org/fundedItem sg:pub.10.1007/s10618-018-0589-3
116 rdf:type schema:MonetaryGrant
117 sg:grant.5244287 http://pending.schema.org/fundedItem sg:pub.10.1007/s10618-018-0589-3
118 rdf:type schema:MonetaryGrant
119 sg:journal.1041853 schema:issn 1384-5810
120 1573-756X
121 schema:name Data Mining and Knowledge Discovery
122 rdf:type schema:Periodical
123 sg:person.010502410405.19 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
124 schema:familyName Yeh
125 schema:givenName Chin-Chia Michael
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010502410405.19
127 rdf:type schema:Person
128 sg:person.010574762741.50 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
129 schema:familyName LaMunion
130 schema:givenName Samuel
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574762741.50
132 rdf:type schema:Person
133 sg:person.01125714074.34 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
134 schema:familyName Keogh
135 schema:givenName Eamonn
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125714074.34
137 rdf:type schema:Person
138 sg:person.01133131263.05 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
139 schema:familyName Hibbing
140 schema:givenName Paul
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133131263.05
142 rdf:type schema:Person
143 sg:person.013363132563.35 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
144 schema:familyName Gharghabi
145 schema:givenName Shaghayegh
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363132563.35
147 rdf:type schema:Person
148 sg:person.01367413330.59 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
149 schema:familyName Crouter
150 schema:givenName Scott E.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367413330.59
152 rdf:type schema:Person
153 sg:person.014406532055.47 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
154 schema:familyName Ding
155 schema:givenName Yifei
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406532055.47
157 rdf:type schema:Person
158 sg:person.0754336354.16 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
159 schema:familyName Ding
160 schema:givenName Wei
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754336354.16
162 rdf:type schema:Person
163 sg:pub.10.1007/978-3-540-74997-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008215056
164 https://doi.org/10.1007/978-3-540-74997-4_4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-642-04394-9_91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016848699
167 https://doi.org/10.1007/978-3-642-04394-9_91
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00024-016-1284-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022608902
170 https://doi.org/10.1007/s00024-016-1284-1
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00371-013-0902-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044041179
173 https://doi.org/10.1007/s00371-013-0902-5
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10115-016-0987-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053043091
176 https://doi.org/10.1007/s10115-016-0987-z
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10163-003-0086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002684991
179 https://doi.org/10.1007/s10163-003-0086-6
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10618-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004951690
182 https://doi.org/10.1007/s10618-015-0415-0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1023/a:1024988512476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028077491
185 https://doi.org/10.1023/a:1024988512476
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/s41598-017-12401-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091925069
188 https://doi.org/10.1038/s41598-017-12401-8
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1083115866 schema:CreativeWork
191 https://doi.org/10.1016/0002-8703(94)90561-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028210518
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/01621459.2013.849605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306134
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/34.589216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156612
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/cic.2003.1291141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094262949
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/cvpr.1997.609382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094788308
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/embc.2016.7591400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084498496
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/icdm.2014.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093890045
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/icip.2009.5413671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094297919
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/icpads.2015.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093249971
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/iswc.2012.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095140883
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/thms.2015.2493536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061615004
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tmm.2014.2310701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698301
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/wacv.2016.7477722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094587142
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1123/jpah.10.3.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062426608
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1142/9789812565402_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088718252
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1145/1989323.1989364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048847919
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1145/2487575.2487634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011632045
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1145/2528282.2528315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014485188
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1145/2556288.2557116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529520
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1145/2588555.2588556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002478232
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1145/2983323.2983855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005043855
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1249/mss.0000000000000502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036200033
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1249/mss.0b013e31820ce174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004883363
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1249/mss.0b013e3182a42a2d schema:sameAs https://app.dimensions.ai/details/publication/pub.1038377939
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3389/fneur.2013.00200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010935903
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.266097.c schema:alternateName University of California, Riverside
242 schema:name Department of Computer Science and Engineering, University of California, Riverside, USA
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
245 schema:name Department of Computer Science, University of Massachusetts Boston, Boston, USA
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
248 schema:name Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...