Domain agnostic online semantic segmentation for multi-dimensional time series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Shaghayegh Gharghabi, Chin-Chia Michael Yeh, Yifei Ding, Wei Ding, Paul Hibbing, Samuel LaMunion, Andrew Kaplan, Scott E. Crouter, Eamonn Keogh

ABSTRACT

Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions. More... »

PAGES

96-130

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3

DOI

http://dx.doi.org/10.1007/s10618-018-0589-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107223526

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30828258


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gharghabi", 
        "givenName": "Shaghayegh", 
        "id": "sg:person.013363132563.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363132563.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeh", 
        "givenName": "Chin-Chia Michael", 
        "id": "sg:person.010502410405.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010502410405.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yifei", 
        "id": "sg:person.014406532055.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406532055.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Computer Science, University of Massachusetts Boston, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Wei", 
        "id": "sg:person.0754336354.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754336354.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hibbing", 
        "givenName": "Paul", 
        "id": "sg:person.01133131263.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133131263.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaMunion", 
        "givenName": "Samuel", 
        "id": "sg:person.010574762741.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574762741.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaplan", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crouter", 
        "givenName": "Scott E.", 
        "id": "sg:person.01367413330.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367413330.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Riverside", 
          "id": "https://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Computer Science and Engineering, University of California, Riverside, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keogh", 
        "givenName": "Eamonn", 
        "id": "sg:person.01125714074.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125714074.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2588555.2588556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002478232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10163-003-0086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002684991", 
          "https://doi.org/10.1007/s10163-003-0086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e31820ce174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004883363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e31820ce174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004883363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-015-0415-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004951690", 
          "https://doi.org/10.1007/s10618-015-0415-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2983323.2983855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005043855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74997-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008215056", 
          "https://doi.org/10.1007/978-3-540-74997-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74997-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008215056", 
          "https://doi.org/10.1007/978-3-540-74997-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fneur.2013.00200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2487575.2487634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011632045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2528282.2528315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014485188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04394-9_91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016848699", 
          "https://doi.org/10.1007/978-3-642-04394-9_91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00024-016-1284-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022608902", 
          "https://doi.org/10.1007/s00024-016-1284-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2556288.2557116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023529520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024988512476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028077491", 
          "https://doi.org/10.1023/a:1024988512476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(94)90561-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028210518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0000000000000502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036200033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0000000000000502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036200033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e3182a42a2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038377939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e3182a42a2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038377939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-013-0902-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044041179", 
          "https://doi.org/10.1007/s00371-013-0902-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1989323.1989364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048847919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-016-0987-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053043091", 
          "https://doi.org/10.1007/s10115-016-0987-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-016-0987-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053043091", 
          "https://doi.org/10.1007/s10115-016-0987-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2013.849605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.589216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/thms.2015.2493536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061615004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2014.2310701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1123/jpah.10.3.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062426608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083115866", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2016.7591400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084498496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812565402_0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088718252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-12401-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091925069", 
          "https://doi.org/10.1038/s41598-017-12401-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpads.2015.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093249971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2014.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093890045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cic.2003.1291141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094262949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2009.5413671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094297919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wacv.2016.7477722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094587142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1997.609382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094788308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iswc.2012.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095140883"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10618-018-0589-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4318618", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5244287", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4179617", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041853", 
        "issn": [
          "1384-5810", 
          "1573-756X"
        ], 
        "name": "Data Mining and Knowledge Discovery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Domain agnostic online semantic segmentation for multi-dimensional time series", 
    "pagination": "96-130", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d66df54efbd3bced090d4fd1898c42d6a1b3d389bea5e0ad93c5a717548dc42"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30828258"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101512456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10618-018-0589-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107223526"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10618-018-0589-3", 
      "https://app.dimensions.ai/details/publication/pub.1107223526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57868_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10618-018-0589-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10618-018-0589-3'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10618-018-0589-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1f04657a7b19454083d964228382676d
4 schema:citation sg:pub.10.1007/978-3-540-74997-4_4
5 sg:pub.10.1007/978-3-642-04394-9_91
6 sg:pub.10.1007/s00024-016-1284-1
7 sg:pub.10.1007/s00371-013-0902-5
8 sg:pub.10.1007/s10115-016-0987-z
9 sg:pub.10.1007/s10163-003-0086-6
10 sg:pub.10.1007/s10618-015-0415-0
11 sg:pub.10.1023/a:1024988512476
12 sg:pub.10.1038/s41598-017-12401-8
13 https://app.dimensions.ai/details/publication/pub.1083115866
14 https://doi.org/10.1016/0002-8703(94)90561-4
15 https://doi.org/10.1080/01621459.2013.849605
16 https://doi.org/10.1109/34.589216
17 https://doi.org/10.1109/cic.2003.1291141
18 https://doi.org/10.1109/cvpr.1997.609382
19 https://doi.org/10.1109/embc.2016.7591400
20 https://doi.org/10.1109/icdm.2014.62
21 https://doi.org/10.1109/icip.2009.5413671
22 https://doi.org/10.1109/icpads.2015.23
23 https://doi.org/10.1109/iswc.2012.13
24 https://doi.org/10.1109/thms.2015.2493536
25 https://doi.org/10.1109/tmm.2014.2310701
26 https://doi.org/10.1109/wacv.2016.7477722
27 https://doi.org/10.1123/jpah.10.3.437
28 https://doi.org/10.1142/9789812565402_0001
29 https://doi.org/10.1145/1989323.1989364
30 https://doi.org/10.1145/2487575.2487634
31 https://doi.org/10.1145/2528282.2528315
32 https://doi.org/10.1145/2556288.2557116
33 https://doi.org/10.1145/2588555.2588556
34 https://doi.org/10.1145/2983323.2983855
35 https://doi.org/10.1249/mss.0000000000000502
36 https://doi.org/10.1249/mss.0b013e31820ce174
37 https://doi.org/10.1249/mss.0b013e3182a42a2d
38 https://doi.org/10.3389/fneur.2013.00200
39 schema:datePublished 2019-01
40 schema:datePublishedReg 2019-01-01
41 schema:description Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N5eb5020725034092979c29fef827cdf5
46 N7b3cfb4dc61244aa876d8ed18408ac28
47 sg:journal.1041853
48 schema:name Domain agnostic online semantic segmentation for multi-dimensional time series
49 schema:pagination 96-130
50 schema:productId N02c2015dc8b34c9eb021a7b6bfadfed0
51 N0399d7560a294aca8c16174f4ec65fc9
52 N2e057b364b78472eb7dcdd5ec7cc488c
53 N8c6893e2d93a47cdbc1b3dae5ca626f4
54 Nf0363bb1a39c4acbb96c4e62bf42a2a1
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107223526
56 https://doi.org/10.1007/s10618-018-0589-3
57 schema:sdDatePublished 2019-04-11T11:25
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N15f1e62b91cc4ace9a928aeb5748c390
60 schema:url https://link.springer.com/10.1007%2Fs10618-018-0589-3
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0088eab3b9b04c9b9ddfcc384d0b1432 rdf:first sg:person.014406532055.47
65 rdf:rest Nf0ce1a346b4b4cf38346820d32458f67
66 N02c2015dc8b34c9eb021a7b6bfadfed0 schema:name doi
67 schema:value 10.1007/s10618-018-0589-3
68 rdf:type schema:PropertyValue
69 N0399d7560a294aca8c16174f4ec65fc9 schema:name dimensions_id
70 schema:value pub.1107223526
71 rdf:type schema:PropertyValue
72 N05c9871d32234fbcb752504265fe3070 rdf:first sg:person.010502410405.19
73 rdf:rest N0088eab3b9b04c9b9ddfcc384d0b1432
74 N14912f1de48847c2940d08476dc6095a rdf:first sg:person.01133131263.05
75 rdf:rest N4341571a3cbc4b5c82345b0c3540d07f
76 N15f1e62b91cc4ace9a928aeb5748c390 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N1f04657a7b19454083d964228382676d rdf:first sg:person.013363132563.35
79 rdf:rest N05c9871d32234fbcb752504265fe3070
80 N2e057b364b78472eb7dcdd5ec7cc488c schema:name readcube_id
81 schema:value 3d66df54efbd3bced090d4fd1898c42d6a1b3d389bea5e0ad93c5a717548dc42
82 rdf:type schema:PropertyValue
83 N353e361206754a2a9d134fd527e5a2fd rdf:first sg:person.01125714074.34
84 rdf:rest rdf:nil
85 N4341571a3cbc4b5c82345b0c3540d07f rdf:first sg:person.010574762741.50
86 rdf:rest Na30f4d192d044039881a425955bbc6e9
87 N5eb5020725034092979c29fef827cdf5 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N7b3cfb4dc61244aa876d8ed18408ac28 schema:volumeNumber 33
90 rdf:type schema:PublicationVolume
91 N8c6893e2d93a47cdbc1b3dae5ca626f4 schema:name nlm_unique_id
92 schema:value 101512456
93 rdf:type schema:PropertyValue
94 N943a3c89ae4b4037bd8b6e53fbdf98cb rdf:first sg:person.01367413330.59
95 rdf:rest N353e361206754a2a9d134fd527e5a2fd
96 Na30f4d192d044039881a425955bbc6e9 rdf:first Nc25c597aee5843bb9320e9dadc6fb3ff
97 rdf:rest N943a3c89ae4b4037bd8b6e53fbdf98cb
98 Nc25c597aee5843bb9320e9dadc6fb3ff schema:affiliation https://www.grid.ac/institutes/grid.411461.7
99 schema:familyName Kaplan
100 schema:givenName Andrew
101 rdf:type schema:Person
102 Nf0363bb1a39c4acbb96c4e62bf42a2a1 schema:name pubmed_id
103 schema:value 30828258
104 rdf:type schema:PropertyValue
105 Nf0ce1a346b4b4cf38346820d32458f67 rdf:first sg:person.0754336354.16
106 rdf:rest N14912f1de48847c2940d08476dc6095a
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:grant.4179617 http://pending.schema.org/fundedItem sg:pub.10.1007/s10618-018-0589-3
114 rdf:type schema:MonetaryGrant
115 sg:grant.4318618 http://pending.schema.org/fundedItem sg:pub.10.1007/s10618-018-0589-3
116 rdf:type schema:MonetaryGrant
117 sg:grant.5244287 http://pending.schema.org/fundedItem sg:pub.10.1007/s10618-018-0589-3
118 rdf:type schema:MonetaryGrant
119 sg:journal.1041853 schema:issn 1384-5810
120 1573-756X
121 schema:name Data Mining and Knowledge Discovery
122 rdf:type schema:Periodical
123 sg:person.010502410405.19 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
124 schema:familyName Yeh
125 schema:givenName Chin-Chia Michael
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010502410405.19
127 rdf:type schema:Person
128 sg:person.010574762741.50 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
129 schema:familyName LaMunion
130 schema:givenName Samuel
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574762741.50
132 rdf:type schema:Person
133 sg:person.01125714074.34 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
134 schema:familyName Keogh
135 schema:givenName Eamonn
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125714074.34
137 rdf:type schema:Person
138 sg:person.01133131263.05 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
139 schema:familyName Hibbing
140 schema:givenName Paul
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133131263.05
142 rdf:type schema:Person
143 sg:person.013363132563.35 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
144 schema:familyName Gharghabi
145 schema:givenName Shaghayegh
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363132563.35
147 rdf:type schema:Person
148 sg:person.01367413330.59 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
149 schema:familyName Crouter
150 schema:givenName Scott E.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367413330.59
152 rdf:type schema:Person
153 sg:person.014406532055.47 schema:affiliation https://www.grid.ac/institutes/grid.266097.c
154 schema:familyName Ding
155 schema:givenName Yifei
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406532055.47
157 rdf:type schema:Person
158 sg:person.0754336354.16 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
159 schema:familyName Ding
160 schema:givenName Wei
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754336354.16
162 rdf:type schema:Person
163 sg:pub.10.1007/978-3-540-74997-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008215056
164 https://doi.org/10.1007/978-3-540-74997-4_4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-642-04394-9_91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016848699
167 https://doi.org/10.1007/978-3-642-04394-9_91
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00024-016-1284-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022608902
170 https://doi.org/10.1007/s00024-016-1284-1
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00371-013-0902-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044041179
173 https://doi.org/10.1007/s00371-013-0902-5
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10115-016-0987-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053043091
176 https://doi.org/10.1007/s10115-016-0987-z
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10163-003-0086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002684991
179 https://doi.org/10.1007/s10163-003-0086-6
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10618-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004951690
182 https://doi.org/10.1007/s10618-015-0415-0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1023/a:1024988512476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028077491
185 https://doi.org/10.1023/a:1024988512476
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/s41598-017-12401-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091925069
188 https://doi.org/10.1038/s41598-017-12401-8
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1083115866 schema:CreativeWork
191 https://doi.org/10.1016/0002-8703(94)90561-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028210518
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/01621459.2013.849605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306134
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/34.589216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156612
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/cic.2003.1291141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094262949
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/cvpr.1997.609382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094788308
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/embc.2016.7591400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084498496
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/icdm.2014.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093890045
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/icip.2009.5413671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094297919
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/icpads.2015.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093249971
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/iswc.2012.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095140883
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/thms.2015.2493536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061615004
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tmm.2014.2310701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698301
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/wacv.2016.7477722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094587142
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1123/jpah.10.3.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062426608
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1142/9789812565402_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088718252
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1145/1989323.1989364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048847919
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1145/2487575.2487634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011632045
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1145/2528282.2528315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014485188
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1145/2556288.2557116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529520
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1145/2588555.2588556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002478232
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1145/2983323.2983855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005043855
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1249/mss.0000000000000502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036200033
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1249/mss.0b013e31820ce174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004883363
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1249/mss.0b013e3182a42a2d schema:sameAs https://app.dimensions.ai/details/publication/pub.1038377939
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3389/fneur.2013.00200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010935903
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.266097.c schema:alternateName University of California, Riverside
242 schema:name Department of Computer Science and Engineering, University of California, Riverside, USA
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
245 schema:name Department of Computer Science, University of Massachusetts Boston, Boston, USA
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
248 schema:name Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville, Knoxville, USA
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...