Simultaneous classification and community detection on heterogeneous network data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03-14

AUTHORS

Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain

ABSTRACT

Previous studies on network mining have focused primarily on learning a single task (such as classification or community detection) on a given network. This paper considers the problem of multi-task learning on heterogeneous network data. Specifically, we present a novel framework that enables one to perform classification on one network and community detection in another related network. Multi-task learning is accomplished by introducing a joint objective function that must be optimized to ensure the classes in one network are consistent with the link structure, nodal attributes, as well as the communities detected in another network. We provide both theoretical and empirical analysis of the framework. We also show that the framework can be extended to incorporate prior information about the correspondences between the clusters and classes in different networks. Experiments performed on both real-world and synthetic data sets demonstrate the effectiveness of the joint framework compared to applying classification and community detection algorithms on each network separately. More... »

PAGES

420-449

References to SciGraph publications

  • 1998. Modern Graph Theory in NONE
  • 2005. Community Mining from Multi-relational Networks in KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005
  • 1997-07. Multitask Learning in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10618-012-0260-3

    DOI

    http://dx.doi.org/10.1007/s10618-012-0260-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023283819


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Comar", 
            "givenName": "Prakash Mandayam", 
            "id": "sg:person.010666614565.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666614565.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Pang-Ning", 
            "id": "sg:person.016500307431.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500307431.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jain", 
            "givenName": "Anil K.", 
            "id": "sg:person.01031110710.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4612-0619-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011696368", 
              "https://doi.org/10.1007/978-1-4612-0619-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007379606734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051365551", 
              "https://doi.org/10.1023/a:1007379606734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11564126_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024546458", 
              "https://doi.org/10.1007/11564126_44"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-03-14", 
        "datePublishedReg": "2012-03-14", 
        "description": "Previous studies on network mining have focused primarily on learning a single task (such as classification or community detection) on a given network. This paper considers the problem of multi-task learning on heterogeneous network data. Specifically, we present a novel framework that enables one to perform classification on one network and community detection in another related network. Multi-task learning is accomplished by introducing a joint objective function that must be optimized to ensure the classes in one network are consistent with the link structure, nodal attributes, as well as the communities detected in another network. We provide both theoretical and empirical analysis of the framework. We also show that the framework can be extended to incorporate prior information about the correspondences between the clusters and classes in different networks. Experiments performed on both real-world and synthetic data sets demonstrate the effectiveness of the joint framework compared to applying classification and community detection algorithms on each network separately.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10618-012-0260-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041853", 
            "issn": [
              "1384-5810", 
              "1573-756X"
            ], 
            "name": "Data Mining and Knowledge Discovery", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "multi-task learning", 
          "heterogeneous network data", 
          "community detection", 
          "network data", 
          "community detection algorithms", 
          "joint objective function", 
          "synthetic data sets", 
          "network mining", 
          "novel framework", 
          "detection algorithm", 
          "link structure", 
          "simultaneous classification", 
          "different networks", 
          "joint framework", 
          "nodal attributes", 
          "single task", 
          "network", 
          "prior information", 
          "data sets", 
          "objective function", 
          "related networks", 
          "classification", 
          "framework", 
          "learning", 
          "mining", 
          "algorithm", 
          "task", 
          "detection", 
          "information", 
          "attributes", 
          "set", 
          "data", 
          "effectiveness", 
          "class", 
          "empirical analysis", 
          "correspondence", 
          "clusters", 
          "experiments", 
          "community", 
          "function", 
          "analysis", 
          "structure", 
          "previous studies", 
          "study", 
          "paper", 
          "problem"
        ], 
        "name": "Simultaneous classification and community detection on heterogeneous network data", 
        "pagination": "420-449", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023283819"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10618-012-0260-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10618-012-0260-3", 
          "https://app.dimensions.ai/details/publication/pub.1023283819"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10618-012-0260-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10618-012-0260-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10618-012-0260-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10618-012-0260-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10618-012-0260-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      74 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10618-012-0260-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author N13190f4f104f4f309b0a1262f6209f90
    5 schema:citation sg:pub.10.1007/11564126_44
    6 sg:pub.10.1007/978-1-4612-0619-4
    7 sg:pub.10.1023/a:1007379606734
    8 schema:datePublished 2012-03-14
    9 schema:datePublishedReg 2012-03-14
    10 schema:description Previous studies on network mining have focused primarily on learning a single task (such as classification or community detection) on a given network. This paper considers the problem of multi-task learning on heterogeneous network data. Specifically, we present a novel framework that enables one to perform classification on one network and community detection in another related network. Multi-task learning is accomplished by introducing a joint objective function that must be optimized to ensure the classes in one network are consistent with the link structure, nodal attributes, as well as the communities detected in another network. We provide both theoretical and empirical analysis of the framework. We also show that the framework can be extended to incorporate prior information about the correspondences between the clusters and classes in different networks. Experiments performed on both real-world and synthetic data sets demonstrate the effectiveness of the joint framework compared to applying classification and community detection algorithms on each network separately.
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N6fa932a757f34467b034f19c3926a419
    14 Nf5f60cfd58144a3891a3a582a83cd683
    15 sg:journal.1041853
    16 schema:keywords algorithm
    17 analysis
    18 attributes
    19 class
    20 classification
    21 clusters
    22 community
    23 community detection
    24 community detection algorithms
    25 correspondence
    26 data
    27 data sets
    28 detection
    29 detection algorithm
    30 different networks
    31 effectiveness
    32 empirical analysis
    33 experiments
    34 framework
    35 function
    36 heterogeneous network data
    37 information
    38 joint framework
    39 joint objective function
    40 learning
    41 link structure
    42 mining
    43 multi-task learning
    44 network
    45 network data
    46 network mining
    47 nodal attributes
    48 novel framework
    49 objective function
    50 paper
    51 previous studies
    52 prior information
    53 problem
    54 related networks
    55 set
    56 simultaneous classification
    57 single task
    58 structure
    59 study
    60 synthetic data sets
    61 task
    62 schema:name Simultaneous classification and community detection on heterogeneous network data
    63 schema:pagination 420-449
    64 schema:productId N0bff8d8b4764455b824f5050a5585671
    65 Ne04cc62e48704cce89761cbe4c880c56
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023283819
    67 https://doi.org/10.1007/s10618-012-0260-3
    68 schema:sdDatePublished 2022-12-01T06:30
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N7cbaef09ac3a4dbaa1e0d230c1d45810
    71 schema:url https://doi.org/10.1007/s10618-012-0260-3
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N0bff8d8b4764455b824f5050a5585671 schema:name dimensions_id
    76 schema:value pub.1023283819
    77 rdf:type schema:PropertyValue
    78 N13190f4f104f4f309b0a1262f6209f90 rdf:first sg:person.010666614565.68
    79 rdf:rest N2bc73fb2cb5b4ed9be673862b99e7597
    80 N2bc73fb2cb5b4ed9be673862b99e7597 rdf:first sg:person.016500307431.52
    81 rdf:rest N9750a2ed02dc4f4cb02ab4e13c6ece16
    82 N6fa932a757f34467b034f19c3926a419 schema:volumeNumber 25
    83 rdf:type schema:PublicationVolume
    84 N7cbaef09ac3a4dbaa1e0d230c1d45810 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N9750a2ed02dc4f4cb02ab4e13c6ece16 rdf:first sg:person.01031110710.30
    87 rdf:rest rdf:nil
    88 Ne04cc62e48704cce89761cbe4c880c56 schema:name doi
    89 schema:value 10.1007/s10618-012-0260-3
    90 rdf:type schema:PropertyValue
    91 Nf5f60cfd58144a3891a3a582a83cd683 schema:issueNumber 3
    92 rdf:type schema:PublicationIssue
    93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Information and Computing Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Artificial Intelligence and Image Processing
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Information Systems
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1041853 schema:issn 1384-5810
    103 1573-756X
    104 schema:name Data Mining and Knowledge Discovery
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.01031110710.30 schema:affiliation grid-institutes:grid.17088.36
    108 schema:familyName Jain
    109 schema:givenName Anil K.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
    111 rdf:type schema:Person
    112 sg:person.010666614565.68 schema:affiliation grid-institutes:grid.17088.36
    113 schema:familyName Comar
    114 schema:givenName Prakash Mandayam
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666614565.68
    116 rdf:type schema:Person
    117 sg:person.016500307431.52 schema:affiliation grid-institutes:grid.17088.36
    118 schema:familyName Tan
    119 schema:givenName Pang-Ning
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500307431.52
    121 rdf:type schema:Person
    122 sg:pub.10.1007/11564126_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024546458
    123 https://doi.org/10.1007/11564126_44
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-1-4612-0619-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011696368
    126 https://doi.org/10.1007/978-1-4612-0619-4
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1023/a:1007379606734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051365551
    129 https://doi.org/10.1023/a:1007379606734
    130 rdf:type schema:CreativeWork
    131 grid-institutes:grid.17088.36 schema:alternateName Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA
    132 schema:name Department of Computer Science & Engineering, Michigan State University, East Lansing, MI, USA
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...