Fast incremental mining of web sequential patterns with PLWAP tree View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12

AUTHORS

C. I. Ezeife, Yi Liu

ABSTRACT

Point and click at web pages generate continuous data sequences, which flow into the web log data, causing the need to update previously mined web sequential patterns. Algorithms for mining web sequential patterns from scratch include WAP, PLWAP and Apriori-based GSP. Reusing old patterns with only recent additional data sequences in an incremental fashion, when updating patterns, would achieve fast response time with reasonable memory space usage. This paper proposes two algorithms, RePL4UP (Revised PLWAP For UPdate), and PL4UP (PLWAP For UPdate), which use the PLWAP tree structure to incrementally update web sequential patterns efficiently without scanning the whole database even when previous small items become frequent. The RePL4UP concisely stores the position codes of small items in the database sequences in its metadata during tree construction. During mining, RePL4UP scans only the new additional database sequences, revises the old PLWAP tree to restore information on previous small items that have become frequent, while it deletes previous frequent items that have become small using the small item position codes. PL4UP initially builds a bigger PLWAP tree that includes all sequences in the database using a tolerance support, t, that is lower than the regular minimum support, s. The position code features of the PLWAP tree are used to efficiently mine these trees to extract current frequent patterns when the database is updated. These approaches more quickly update old frequent patterns without the need to re-scan the entire updated database. More... »

PAGES

376-416

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10618-009-0133-6

DOI

http://dx.doi.org/10.1007/s10618-009-0133-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044062823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezeife", 
        "givenName": "C. I.", 
        "id": "sg:person.01200460536.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yi", 
        "id": "sg:person.013165660001.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013165660001.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1008689103430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001069922", 
          "https://doi.org/10.1023/a:1008689103430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-023x(01)00008-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001497929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27772-9_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003880123", 
          "https://doi.org/10.1007/978-3-540-27772-9_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27772-9_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003880123", 
          "https://doi.org/10.1007/978-3-540-27772-9_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45571-x_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007543846", 
          "https://doi.org/10.1007/3-540-45571-x_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-023x(02)00209-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010108931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-023x(02)00209-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010108931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007780050083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011103093", 
          "https://doi.org/10.1007/s007780050083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:dami.0000005258.31418.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019489501", 
          "https://doi.org/10.1023/b:dami.0000005258.31418.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-006-0043-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899740", 
          "https://doi.org/10.1007/s00778-006-0043-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-006-0043-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899740", 
          "https://doi.org/10.1007/s00778-006-0043-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1031453.1031477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020563117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47887-6_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022523409", 
          "https://doi.org/10.1007/3-540-47887-6_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-005-0268-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024262911", 
          "https://doi.org/10.1007/s10618-005-0268-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-005-0268-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024262911", 
          "https://doi.org/10.1007/s10618-005-0268-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-739x(97)00019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024615958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1233341.1233382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025821795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0950-7051(98)00037-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027074970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1133905.1133910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028631279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/319950.320010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034089994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007652502315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035368646", 
          "https://doi.org/10.1023/a:1007652502315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2007.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036623560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11430919_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045470675", 
          "https://doi.org/10.1007/11430919_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11430919_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045470675", 
          "https://doi.org/10.1007/11430919_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-005-0248-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051889932", 
          "https://doi.org/10.1007/s10618-005-0248-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbidm.2006.009136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067437001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1995.380415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094007712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1996.492094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094013387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2001.914830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095566607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ideas.2004.1319823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095827031"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "Point and click at web pages generate continuous data sequences, which flow into the web log data, causing the need to update previously mined web sequential patterns. Algorithms for mining web sequential patterns from scratch include WAP, PLWAP and Apriori-based GSP. Reusing old patterns with only recent additional data sequences in an incremental fashion, when updating patterns, would achieve fast response time with reasonable memory space usage. This paper proposes two algorithms, RePL4UP (Revised PLWAP For UPdate), and PL4UP (PLWAP For UPdate), which use the PLWAP tree structure to incrementally update web sequential patterns efficiently without scanning the whole database even when previous small items become frequent. The RePL4UP concisely stores the position codes of small items in the database sequences in its metadata during tree construction. During mining, RePL4UP scans only the new additional database sequences, revises the old PLWAP tree to restore information on previous small items that have become frequent, while it deletes previous frequent items that have become small using the small item position codes. PL4UP initially builds a bigger PLWAP tree that includes all sequences in the database using a tolerance support, t, that is lower than the regular minimum support, s. The position code features of the PLWAP tree are used to efficiently mine these trees to extract current frequent patterns when the database is updated. These approaches more quickly update old frequent patterns without the need to re-scan the entire updated database.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10618-009-0133-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041853", 
        "issn": [
          "1384-5810", 
          "1573-756X"
        ], 
        "name": "Data Mining and Knowledge Discovery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Fast incremental mining of web sequential patterns with PLWAP tree", 
    "pagination": "376-416", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10618-009-0133-6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d1e2ea7fc19d46e4ea5f339e216e22eb0d08fd05bab2b6293b594955766d6841"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044062823"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10618-009-0133-6", 
      "https://app.dimensions.ai/details/publication/pub.1044062823"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56193_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10618-009-0133-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10618-009-0133-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10618-009-0133-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10618-009-0133-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10618-009-0133-6'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10618-009-0133-6 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nbbdf04c5919a404c8b990a74013a2331
4 schema:citation sg:pub.10.1007/11430919_52
5 sg:pub.10.1007/3-540-45571-x_47
6 sg:pub.10.1007/3-540-47887-6_18
7 sg:pub.10.1007/978-3-540-27772-9_54
8 sg:pub.10.1007/s00778-006-0043-9
9 sg:pub.10.1007/s007780050083
10 sg:pub.10.1007/s10618-005-0248-3
11 sg:pub.10.1007/s10618-005-0268-z
12 sg:pub.10.1023/a:1007652502315
13 sg:pub.10.1023/a:1008689103430
14 sg:pub.10.1023/b:dami.0000005258.31418.83
15 https://doi.org/10.1016/j.ins.2007.08.020
16 https://doi.org/10.1016/s0167-739x(97)00019-8
17 https://doi.org/10.1016/s0169-023x(01)00008-8
18 https://doi.org/10.1016/s0169-023x(02)00209-4
19 https://doi.org/10.1016/s0950-7051(98)00037-9
20 https://doi.org/10.1109/icde.1995.380415
21 https://doi.org/10.1109/icde.1996.492094
22 https://doi.org/10.1109/icde.2001.914830
23 https://doi.org/10.1109/ideas.2004.1319823
24 https://doi.org/10.1145/1031453.1031477
25 https://doi.org/10.1145/1133905.1133910
26 https://doi.org/10.1145/1233341.1233382
27 https://doi.org/10.1145/319950.320010
28 https://doi.org/10.1504/ijbidm.2006.009136
29 schema:datePublished 2009-12
30 schema:datePublishedReg 2009-12-01
31 schema:description Point and click at web pages generate continuous data sequences, which flow into the web log data, causing the need to update previously mined web sequential patterns. Algorithms for mining web sequential patterns from scratch include WAP, PLWAP and Apriori-based GSP. Reusing old patterns with only recent additional data sequences in an incremental fashion, when updating patterns, would achieve fast response time with reasonable memory space usage. This paper proposes two algorithms, RePL4UP (Revised PLWAP For UPdate), and PL4UP (PLWAP For UPdate), which use the PLWAP tree structure to incrementally update web sequential patterns efficiently without scanning the whole database even when previous small items become frequent. The RePL4UP concisely stores the position codes of small items in the database sequences in its metadata during tree construction. During mining, RePL4UP scans only the new additional database sequences, revises the old PLWAP tree to restore information on previous small items that have become frequent, while it deletes previous frequent items that have become small using the small item position codes. PL4UP initially builds a bigger PLWAP tree that includes all sequences in the database using a tolerance support, t, that is lower than the regular minimum support, s. The position code features of the PLWAP tree are used to efficiently mine these trees to extract current frequent patterns when the database is updated. These approaches more quickly update old frequent patterns without the need to re-scan the entire updated database.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N96706fe1bc9e46279baf27535e7cce81
36 Nf4c910b331f94dd9a74827ff1628ee10
37 sg:journal.1041853
38 schema:name Fast incremental mining of web sequential patterns with PLWAP tree
39 schema:pagination 376-416
40 schema:productId N3a7ef1eb1e5642948611be2a47a1d9f9
41 Ne26e842564e74e569c42592994ebdd32
42 Ned990462852b4676aed62e346b9b913c
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044062823
44 https://doi.org/10.1007/s10618-009-0133-6
45 schema:sdDatePublished 2019-04-15T09:26
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nfbe9388e255f455db93c5a727c78fef9
48 schema:url http://link.springer.com/10.1007%2Fs10618-009-0133-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N3a7ef1eb1e5642948611be2a47a1d9f9 schema:name doi
53 schema:value 10.1007/s10618-009-0133-6
54 rdf:type schema:PropertyValue
55 N7ffe4ffc2fad4df3992a83615b8b06d9 rdf:first sg:person.013165660001.33
56 rdf:rest rdf:nil
57 N96706fe1bc9e46279baf27535e7cce81 schema:issueNumber 3
58 rdf:type schema:PublicationIssue
59 Nbbdf04c5919a404c8b990a74013a2331 rdf:first sg:person.01200460536.41
60 rdf:rest N7ffe4ffc2fad4df3992a83615b8b06d9
61 Ne26e842564e74e569c42592994ebdd32 schema:name dimensions_id
62 schema:value pub.1044062823
63 rdf:type schema:PropertyValue
64 Ned990462852b4676aed62e346b9b913c schema:name readcube_id
65 schema:value d1e2ea7fc19d46e4ea5f339e216e22eb0d08fd05bab2b6293b594955766d6841
66 rdf:type schema:PropertyValue
67 Nf4c910b331f94dd9a74827ff1628ee10 schema:volumeNumber 19
68 rdf:type schema:PublicationVolume
69 Nfbe9388e255f455db93c5a727c78fef9 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information Systems
76 rdf:type schema:DefinedTerm
77 sg:journal.1041853 schema:issn 1384-5810
78 1573-756X
79 schema:name Data Mining and Knowledge Discovery
80 rdf:type schema:Periodical
81 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
82 schema:familyName Ezeife
83 schema:givenName C. I.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
85 rdf:type schema:Person
86 sg:person.013165660001.33 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
87 schema:familyName Liu
88 schema:givenName Yi
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013165660001.33
90 rdf:type schema:Person
91 sg:pub.10.1007/11430919_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045470675
92 https://doi.org/10.1007/11430919_52
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/3-540-45571-x_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007543846
95 https://doi.org/10.1007/3-540-45571-x_47
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/3-540-47887-6_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022523409
98 https://doi.org/10.1007/3-540-47887-6_18
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-3-540-27772-9_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003880123
101 https://doi.org/10.1007/978-3-540-27772-9_54
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00778-006-0043-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019899740
104 https://doi.org/10.1007/s00778-006-0043-9
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s007780050083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011103093
107 https://doi.org/10.1007/s007780050083
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10618-005-0248-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051889932
110 https://doi.org/10.1007/s10618-005-0248-3
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10618-005-0268-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024262911
113 https://doi.org/10.1007/s10618-005-0268-z
114 rdf:type schema:CreativeWork
115 sg:pub.10.1023/a:1007652502315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035368646
116 https://doi.org/10.1023/a:1007652502315
117 rdf:type schema:CreativeWork
118 sg:pub.10.1023/a:1008689103430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001069922
119 https://doi.org/10.1023/a:1008689103430
120 rdf:type schema:CreativeWork
121 sg:pub.10.1023/b:dami.0000005258.31418.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019489501
122 https://doi.org/10.1023/b:dami.0000005258.31418.83
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ins.2007.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036623560
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0167-739x(97)00019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024615958
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0169-023x(01)00008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001497929
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0169-023x(02)00209-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010108931
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0950-7051(98)00037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027074970
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/icde.1995.380415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094007712
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/icde.1996.492094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094013387
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/icde.2001.914830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095566607
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/ideas.2004.1319823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095827031
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/1031453.1031477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020563117
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/1133905.1133910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028631279
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1233341.1233382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025821795
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/319950.320010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034089994
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1504/ijbidm.2006.009136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067437001
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
153 schema:name School of Computer Science, University of Windsor, N9B 3P4, Windsor, ON, Canada
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...