Hierarchical Clustering Algorithms for Document Datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-03

AUTHORS

Ying Zhao, George Karypis, Usama Fayyad

ABSTRACT

Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters. In particular, clustering algorithms that build meaningful hierarchies out of large document collections are ideal tools for their interactive visualization and exploration as they provide data-views that are consistent, predictable, and at different levels of granularity. This paper focuses on document clustering algorithms that build such hierarchical solutions and (i) presents a comprehensive study of partitional and agglomerative algorithms that use different criterion functions and merging schemes, and (ii) presents a new class of clustering algorithms called constrained agglomerative algorithms, which combine features from both partitional and agglomerative approaches that allows them to reduce the early-stage errors made by agglomerative methods and hence improve the quality of clustering solutions. The experimental evaluation shows that, contrary to the common belief, partitional algorithms always lead to better solutions than agglomerative algorithms; making them ideal for clustering large document collections due to not only their relatively low computational requirements, but also higher clustering quality. Furthermore, the constrained agglomerative methods consistently lead to better solutions than agglomerative methods alone and for many cases they outperform partitional methods, as well. More... »

PAGES

141-168

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10618-005-0361-3

DOI

http://dx.doi.org/10.1007/s10618-005-0361-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034654478


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Computer Science and Engineering and Digital Technology Center and Army HPC Research Center, University of Minnesota, 55455, Minneapolis, MN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Ying", 
        "id": "sg:person.0627072514.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627072514.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Computer Science and Engineering and Digital Technology Center and Army HPC Research Center, University of Minnesota, 55455, Minneapolis, MN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karypis", 
        "givenName": "George", 
        "id": "sg:person.01200652334.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200652334.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Computer Science and Engineering and Digital Technology Center and Army HPC Research Center, University of Minnesota, 55455, Minneapolis, MN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fayyad", 
        "givenName": "Usama", 
        "id": "sg:person.07517647725.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517647725.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1009740529316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008512628", 
          "https://doi.org/10.1023/a:1009740529316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/280765.280872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012480516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/502585.502591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012556429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/347090.347176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019143234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/584792.584877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023701463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006592405320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025377553", 
          "https://doi.org/10.1023/a:1006592405320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/312129.312279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026895960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/276304.276312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028838647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mach.0000027785.44527.d6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032967720", 
          "https://doi.org/10.1023/b:mach.0000027785.44527.d6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb046814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/133160.133214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039319061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9236(99)00055-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040102112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00076-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041533201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/312129.312186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047908372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007612920971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049726547", 
          "https://doi.org/10.1023/a:1007612920971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44467-x_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051032296", 
          "https://doi.org/10.1007/3-540-44467-x_48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051293167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051293167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1967.10482890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.781637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.868688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/43.103500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1971.223083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.27-0351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073292765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccad.1991.185177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086329306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972719.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088799854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada439551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091541272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1999.754967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095425568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2002.1183895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095474706"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters. In particular, clustering algorithms that build meaningful hierarchies out of large document collections are ideal tools for their interactive visualization and exploration as they provide data-views that are consistent, predictable, and at different levels of granularity. This paper focuses on document clustering algorithms that build such hierarchical solutions and (i) presents a comprehensive study of partitional and agglomerative algorithms that use different criterion functions and merging schemes, and (ii) presents a new class of clustering algorithms called constrained agglomerative algorithms, which combine features from both partitional and agglomerative approaches that allows them to reduce the early-stage errors made by agglomerative methods and hence improve the quality of clustering solutions. The experimental evaluation shows that, contrary to the common belief, partitional algorithms always lead to better solutions than agglomerative algorithms; making them ideal for clustering large document collections due to not only their relatively low computational requirements, but also higher clustering quality. Furthermore, the constrained agglomerative methods consistently lead to better solutions than agglomerative methods alone and for many cases they outperform partitional methods, as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10618-005-0361-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041853", 
        "issn": [
          "1384-5810", 
          "1573-756X"
        ], 
        "name": "Data Mining and Knowledge Discovery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Hierarchical Clustering Algorithms for Document Datasets", 
    "pagination": "141-168", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10618-005-0361-3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a514c093d74bedd2de7df67e07898666a3fc8fbd4dd28990667e1f8fc51195ff"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034654478"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10618-005-0361-3", 
      "https://app.dimensions.ai/details/publication/pub.1034654478"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56159_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10618-005-0361-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0361-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0361-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0361-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0361-3'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10618-005-0361-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfd24cdf8763047b8b6b50b59c75e685b
4 schema:citation sg:pub.10.1007/3-540-44467-x_48
5 sg:pub.10.1023/a:1006592405320
6 sg:pub.10.1023/a:1007612920971
7 sg:pub.10.1023/a:1009740529316
8 sg:pub.10.1023/b:mach.0000027785.44527.d6
9 https://doi.org/10.1016/0306-4573(88)90027-1
10 https://doi.org/10.1016/s0031-3203(99)00076-x
11 https://doi.org/10.1016/s0167-9236(99)00055-x
12 https://doi.org/10.1080/01621459.1967.10482890
13 https://doi.org/10.1108/eb046814
14 https://doi.org/10.1109/2.781637
15 https://doi.org/10.1109/34.868688
16 https://doi.org/10.1109/43.103500
17 https://doi.org/10.1109/iccad.1991.185177
18 https://doi.org/10.1109/icde.1999.754967
19 https://doi.org/10.1109/icdm.2002.1183895
20 https://doi.org/10.1109/t-c.1971.223083
21 https://doi.org/10.1137/1.9781611972719.5
22 https://doi.org/10.1145/133160.133214
23 https://doi.org/10.1145/276304.276312
24 https://doi.org/10.1145/280765.280872
25 https://doi.org/10.1145/312129.312186
26 https://doi.org/10.1145/312129.312279
27 https://doi.org/10.1145/347090.347176
28 https://doi.org/10.1145/502585.502591
29 https://doi.org/10.1145/584792.584877
30 https://doi.org/10.21236/ada439551
31 https://doi.org/10.5860/choice.27-0351
32 schema:datePublished 2005-03
33 schema:datePublishedReg 2005-03-01
34 schema:description Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters. In particular, clustering algorithms that build meaningful hierarchies out of large document collections are ideal tools for their interactive visualization and exploration as they provide data-views that are consistent, predictable, and at different levels of granularity. This paper focuses on document clustering algorithms that build such hierarchical solutions and (i) presents a comprehensive study of partitional and agglomerative algorithms that use different criterion functions and merging schemes, and (ii) presents a new class of clustering algorithms called constrained agglomerative algorithms, which combine features from both partitional and agglomerative approaches that allows them to reduce the early-stage errors made by agglomerative methods and hence improve the quality of clustering solutions. The experimental evaluation shows that, contrary to the common belief, partitional algorithms always lead to better solutions than agglomerative algorithms; making them ideal for clustering large document collections due to not only their relatively low computational requirements, but also higher clustering quality. Furthermore, the constrained agglomerative methods consistently lead to better solutions than agglomerative methods alone and for many cases they outperform partitional methods, as well.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N074bfae4945342249b908a98bc7d5899
39 N62fe7ef1696a4eaeadd151cb5a3c2d5b
40 sg:journal.1041853
41 schema:name Hierarchical Clustering Algorithms for Document Datasets
42 schema:pagination 141-168
43 schema:productId N1c91e5a5490e458bac8234894e753073
44 Naabeb66df0d04e6883404eca2f742300
45 Nf02845eef40b47c880de329c91bb756d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034654478
47 https://doi.org/10.1007/s10618-005-0361-3
48 schema:sdDatePublished 2019-04-15T09:12
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N917cd9e94298419bb9bc87a8bc8ab2ca
51 schema:url http://link.springer.com/10.1007%2Fs10618-005-0361-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0204d4cfe277451bb7a19a8fb49da209 rdf:first sg:person.07517647725.42
56 rdf:rest rdf:nil
57 N074bfae4945342249b908a98bc7d5899 schema:volumeNumber 10
58 rdf:type schema:PublicationVolume
59 N1c91e5a5490e458bac8234894e753073 schema:name doi
60 schema:value 10.1007/s10618-005-0361-3
61 rdf:type schema:PropertyValue
62 N36bc4605d3874dabbf5980e705c401f2 rdf:first sg:person.01200652334.04
63 rdf:rest N0204d4cfe277451bb7a19a8fb49da209
64 N62fe7ef1696a4eaeadd151cb5a3c2d5b schema:issueNumber 2
65 rdf:type schema:PublicationIssue
66 N917cd9e94298419bb9bc87a8bc8ab2ca schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Naabeb66df0d04e6883404eca2f742300 schema:name dimensions_id
69 schema:value pub.1034654478
70 rdf:type schema:PropertyValue
71 Nf02845eef40b47c880de329c91bb756d schema:name readcube_id
72 schema:value a514c093d74bedd2de7df67e07898666a3fc8fbd4dd28990667e1f8fc51195ff
73 rdf:type schema:PropertyValue
74 Nfd24cdf8763047b8b6b50b59c75e685b rdf:first sg:person.0627072514.11
75 rdf:rest N36bc4605d3874dabbf5980e705c401f2
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:journal.1041853 schema:issn 1384-5810
83 1573-756X
84 schema:name Data Mining and Knowledge Discovery
85 rdf:type schema:Periodical
86 sg:person.01200652334.04 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
87 schema:familyName Karypis
88 schema:givenName George
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200652334.04
90 rdf:type schema:Person
91 sg:person.0627072514.11 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
92 schema:familyName Zhao
93 schema:givenName Ying
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627072514.11
95 rdf:type schema:Person
96 sg:person.07517647725.42 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
97 schema:familyName Fayyad
98 schema:givenName Usama
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517647725.42
100 rdf:type schema:Person
101 sg:pub.10.1007/3-540-44467-x_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051032296
102 https://doi.org/10.1007/3-540-44467-x_48
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1006592405320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025377553
105 https://doi.org/10.1023/a:1006592405320
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1007612920971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049726547
108 https://doi.org/10.1023/a:1007612920971
109 rdf:type schema:CreativeWork
110 sg:pub.10.1023/a:1009740529316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008512628
111 https://doi.org/10.1023/a:1009740529316
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/b:mach.0000027785.44527.d6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032967720
114 https://doi.org/10.1023/b:mach.0000027785.44527.d6
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0306-4573(88)90027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051293167
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0031-3203(99)00076-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041533201
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0167-9236(99)00055-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040102112
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/01621459.1967.10482890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300129
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1108/eb046814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275209
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/2.781637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106156
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/34.868688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157130
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/43.103500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172475
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/iccad.1991.185177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086329306
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/icde.1999.754967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095425568
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/icdm.2002.1183895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095474706
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/t-c.1971.223083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455327
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/1.9781611972719.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088799854
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/133160.133214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039319061
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/276304.276312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028838647
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/280765.280872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012480516
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/312129.312186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047908372
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/312129.312279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026895960
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/347090.347176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019143234
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/502585.502591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012556429
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/584792.584877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023701463
157 rdf:type schema:CreativeWork
158 https://doi.org/10.21236/ada439551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091541272
159 rdf:type schema:CreativeWork
160 https://doi.org/10.5860/choice.27-0351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073292765
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
163 schema:name Department of Computer Science and Engineering and Digital Technology Center and Army HPC Research Center, University of Minnesota, 55455, Minneapolis, MN
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...