Ontology type: schema:ScholarlyArticle
2006-01
AUTHORSMichail Vlachos, Philip S. Yu, Vittorio Castelli, Christopher Meek
ABSTRACTThis work motivates the need for more flexible structural similarity measures between time-series sequences, which are based on the extraction of important periodic features. Specifically, we present non-parametric methods for accurate periodicity detection and we introduce new periodic distance measures for time-series sequences. We combine these new measures with an effective metric tree index structure for efficiently answering k-Nearest-Neighbor queries. The goal of these tools and techniques are to assist in detecting, monitoring and visualizing structural periodic changes. It is our belief that these methods can be directly applicable in the manufacturing industry for preventive maintenance and in the medical sciences for accurate classification and anomaly detection. More... »
PAGES1-28
http://scigraph.springernature.com/pub.10.1007/s10618-005-0016-4
DOIhttp://dx.doi.org/10.1007/s10618-005-0016-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036104878
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "IBM Research \u2013 Thomas J. Watson Research Center",
"id": "https://www.grid.ac/institutes/grid.481554.9",
"name": [
"IBM T.J. Watson Research Center, 19 Skyline Dr, Hawthorne, NY, USA"
],
"type": "Organization"
},
"familyName": "Vlachos",
"givenName": "Michail",
"id": "sg:person.07523006533.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07523006533.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM Research \u2013 Thomas J. Watson Research Center",
"id": "https://www.grid.ac/institutes/grid.481554.9",
"name": [
"IBM T.J. Watson Research Center, 19 Skyline Dr, Hawthorne, NY, USA"
],
"type": "Organization"
},
"familyName": "Yu",
"givenName": "Philip S.",
"id": "sg:person.011016356115.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016356115.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM Research \u2013 Thomas J. Watson Research Center",
"id": "https://www.grid.ac/institutes/grid.481554.9",
"name": [
"IBM T.J. Watson Research Center, 19 Skyline Dr, Hawthorne, NY, USA"
],
"type": "Organization"
},
"familyName": "Castelli",
"givenName": "Vittorio",
"id": "sg:person.014627476513.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627476513.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Microsoft (United States)",
"id": "https://www.grid.ac/institutes/grid.419815.0",
"name": [
"Microsoft Research, One Microsoft Way, Redmond, WA, USA"
],
"type": "Organization"
},
"familyName": "Meek",
"givenName": "Christopher",
"id": "sg:person.01352023432.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352023432.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/1014052.1014077",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000193805"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-155860869-6/50043-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010100930"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1136/jnnp.67.6.800",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011979771"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/brain/122.7.1349",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018481627"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/pl00010672",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025617435",
"https://doi.org/10.1007/pl00010672"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/93597.98741",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025736774"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.290.5500.2319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028334489"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-24741-8_35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030694382",
"https://doi.org/10.1007/978-3-540-24741-8_35"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-24741-8_35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030694382",
"https://doi.org/10.1007/978-3-540-24741-8_35"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/775047.775062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031094505"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/602259.602266",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042817816"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-57301-1_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051043966",
"https://doi.org/10.1007/3-540-57301-1_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/proc.1978.10837",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061443841"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.254.5032.698",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062542925"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icdm.2001.989531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094205033"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icdm.2001.989529",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095656178"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1100484362",
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4135/9781412985130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100484362"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4135/9781412985130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100484362"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-01",
"datePublishedReg": "2006-01-01",
"description": "This work motivates the need for more flexible structural similarity measures between time-series sequences, which are based on the extraction of important periodic features. Specifically, we present non-parametric methods for accurate periodicity detection and we introduce new periodic distance measures for time-series sequences. We combine these new measures with an effective metric tree index structure for efficiently answering k-Nearest-Neighbor queries. The goal of these tools and techniques are to assist in detecting, monitoring and visualizing structural periodic changes. It is our belief that these methods can be directly applicable in the manufacturing industry for preventive maintenance and in the medical sciences for accurate classification and anomaly detection.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10618-005-0016-4",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041853",
"issn": [
"1384-5810",
"1573-756X"
],
"name": "Data Mining and Knowledge Discovery",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"name": "Structural Periodic Measures for Time-Series Data",
"pagination": "1-28",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"abfd7d924e9fa69f826acc36bce3c2dc4859de3be9342ea2f141e3e924fed8ed"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10618-005-0016-4"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036104878"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10618-005-0016-4",
"https://app.dimensions.ai/details/publication/pub.1036104878"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72859_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10618-005-0016-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0016-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0016-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0016-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10618-005-0016-4'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
21 PREDICATES
44 URIs
19 LITERALS
7 BLANK NODES