Ontology type: schema:ScholarlyArticle Open Access: True
2009-12
AUTHORSDavid Gothard, Scott J. Roberts, Kevin M. Shakesheff, Lee D. Buttery
ABSTRACTCell–cell interaction is an integral part of embryoid body (EB) formation controlling 3D aggregation. Manipulation of embryonic stem (ES) cell interactions could provide control over EB formation. Studies have shown a direct relationship between EB formation and ES cell differentiation. We have previously described a cell surface modification and cross-linking method for influencing cell–cell interaction and formation of multicellular constructs. Here we show further characterisation of this engineered aggregation. We demonstrate that engineering accelerates ES cell aggregation, forming larger, denser and more stable EBs than control samples, with no significant decrease in constituent ES cell viability. However, extended culture ≥5 days reveals significant core necrosis creating a layered EB structure. Accelerated aggregation through engineering circumvents this problem as EB formation time is reduced. We conclude that the proposed engineering method influences initial ES cell-ES cell interactions and EB formation. This methodology could be employed to further our understanding of intrinsic EB properties and their effect on ES cell differentiation. More... »
PAGES135-144
http://scigraph.springernature.com/pub.10.1007/s10616-010-9255-3
DOIhttp://dx.doi.org/10.1007/s10616-010-9255-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032055901
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/20145998
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK",
"id": "http://www.grid.ac/institutes/grid.4563.4",
"name": [
"STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Gothard",
"givenName": "David",
"id": "sg:person.01044562053.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044562053.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O&N 1, Herestraat 49 bus 813, 3000, Leuven, Belgium",
"id": "http://www.grid.ac/institutes/grid.5596.f",
"name": [
"Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O&N 1, Herestraat 49 bus 813, 3000, Leuven, Belgium"
],
"type": "Organization"
},
"familyName": "Roberts",
"givenName": "Scott J.",
"id": "sg:person.01126667351.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126667351.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK",
"id": "http://www.grid.ac/institutes/grid.4563.4",
"name": [
"STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Shakesheff",
"givenName": "Kevin M.",
"id": "sg:person.07714345177.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714345177.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK",
"id": "http://www.grid.ac/institutes/grid.4563.4",
"name": [
"STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Buttery",
"givenName": "Lee D.",
"id": "sg:person.011101227747.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101227747.44"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/labinvest.3780380",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007638244",
"https://doi.org/10.1038/labinvest.3780380"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10495-005-2946-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042828864",
"https://doi.org/10.1007/s10495-005-2946-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/323445a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047908913",
"https://doi.org/10.1038/323445a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-213x-9-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028641972",
"https://doi.org/10.1186/1471-213x-9-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03401776",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1074655583",
"https://doi.org/10.1007/bf03401776"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-12",
"datePublishedReg": "2009-12-01",
"description": "Cell\u2013cell interaction is an integral part of embryoid body (EB) formation controlling 3D aggregation. Manipulation of embryonic stem (ES) cell interactions could provide control over EB formation. Studies have shown a direct relationship between EB formation and ES cell differentiation. We have previously described a cell surface modification and cross-linking method for influencing cell\u2013cell interaction and formation of multicellular constructs. Here we show further characterisation of this engineered aggregation. We demonstrate that engineering accelerates ES cell aggregation, forming larger, denser and more stable EBs than control samples, with no significant decrease in constituent ES cell viability. However, extended culture\u00a0\u22655\u00a0days reveals significant core necrosis creating a layered EB structure. Accelerated aggregation through engineering circumvents this problem as EB formation time is reduced. We conclude that the proposed engineering method influences initial ES cell-ES cell interactions and EB formation. This methodology could be employed to further our understanding of intrinsic EB properties and their effect on ES cell differentiation.",
"genre": "article",
"id": "sg:pub.10.1007/s10616-010-9255-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1086307",
"issn": [
"1381-5741",
"1573-0603"
],
"name": "Cytotechnology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "61"
}
],
"keywords": [
"surface modification",
"multicellular constructs",
"cross-linking method",
"engineering methods",
"EB properties",
"stem cell interactions",
"formation time",
"denser",
"formation",
"method",
"EB structure",
"properties",
"control samples",
"modification",
"characterisation",
"structure",
"methodology",
"interaction",
"cell surface modification",
"integral part",
"problem",
"core necrosis",
"aggregation",
"control",
"time",
"effect",
"direct relationship",
"EB",
"samples",
"decrease",
"part",
"circumvent",
"embryoid body formation",
"EB formation",
"manipulation",
"ES cell aggregation",
"viability",
"study",
"cell viability",
"ES cell differentiation",
"cell-cell interactions",
"ES cell differentiation",
"ES cell viability",
"cell aggregation",
"further characterisation",
"understanding",
"cell interactions",
"significant decrease",
"relationship",
"avidin-biotin",
"extended culture",
"days",
"body formation",
"cell differentiation",
"constructs",
"differentiation",
"accelerated aggregation",
"culture",
"necrosis"
],
"name": "Controlled embryoid body formation via surface modification and avidin\u2013biotin cross-linking",
"pagination": "135-144",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032055901"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10616-010-9255-3"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"20145998"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10616-010-9255-3",
"https://app.dimensions.ai/details/publication/pub.1032055901"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_499.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10616-010-9255-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10616-010-9255-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10616-010-9255-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10616-010-9255-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10616-010-9255-3'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
22 PREDICATES
90 URIs
77 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10616-010-9255-3 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0601 |
3 | ″ | schema:author | N9650e72646cf4585ac5352214c18e157 |
4 | ″ | schema:citation | sg:pub.10.1007/bf03401776 |
5 | ″ | ″ | sg:pub.10.1007/s10495-005-2946-0 |
6 | ″ | ″ | sg:pub.10.1038/323445a0 |
7 | ″ | ″ | sg:pub.10.1038/labinvest.3780380 |
8 | ″ | ″ | sg:pub.10.1186/1471-213x-9-5 |
9 | ″ | schema:datePublished | 2009-12 |
10 | ″ | schema:datePublishedReg | 2009-12-01 |
11 | ″ | schema:description | Cell–cell interaction is an integral part of embryoid body (EB) formation controlling 3D aggregation. Manipulation of embryonic stem (ES) cell interactions could provide control over EB formation. Studies have shown a direct relationship between EB formation and ES cell differentiation. We have previously described a cell surface modification and cross-linking method for influencing cell–cell interaction and formation of multicellular constructs. Here we show further characterisation of this engineered aggregation. We demonstrate that engineering accelerates ES cell aggregation, forming larger, denser and more stable EBs than control samples, with no significant decrease in constituent ES cell viability. However, extended culture ≥5 days reveals significant core necrosis creating a layered EB structure. Accelerated aggregation through engineering circumvents this problem as EB formation time is reduced. We conclude that the proposed engineering method influences initial ES cell-ES cell interactions and EB formation. This methodology could be employed to further our understanding of intrinsic EB properties and their effect on ES cell differentiation. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N070f3dd2427948aab2efbec1fcef83b2 |
16 | ″ | ″ | Nb4e8317b96d44c85b613fdb6e1be32d2 |
17 | ″ | ″ | sg:journal.1086307 |
18 | ″ | schema:keywords | EB |
19 | ″ | ″ | EB formation |
20 | ″ | ″ | EB properties |
21 | ″ | ″ | EB structure |
22 | ″ | ″ | ES cell aggregation |
23 | ″ | ″ | ES cell differentiation |
24 | ″ | ″ | ES cell viability |
25 | ″ | ″ | accelerated aggregation |
26 | ″ | ″ | aggregation |
27 | ″ | ″ | avidin-biotin |
28 | ″ | ″ | body formation |
29 | ″ | ″ | cell aggregation |
30 | ″ | ″ | cell differentiation |
31 | ″ | ″ | cell interactions |
32 | ″ | ″ | cell surface modification |
33 | ″ | ″ | cell viability |
34 | ″ | ″ | cell-cell interactions |
35 | ″ | ″ | characterisation |
36 | ″ | ″ | circumvent |
37 | ″ | ″ | constructs |
38 | ″ | ″ | control |
39 | ″ | ″ | control samples |
40 | ″ | ″ | core necrosis |
41 | ″ | ″ | cross-linking method |
42 | ″ | ″ | culture |
43 | ″ | ″ | days |
44 | ″ | ″ | decrease |
45 | ″ | ″ | denser |
46 | ″ | ″ | differentiation |
47 | ″ | ″ | direct relationship |
48 | ″ | ″ | effect |
49 | ″ | ″ | embryoid body formation |
50 | ″ | ″ | engineering methods |
51 | ″ | ″ | extended culture |
52 | ″ | ″ | formation |
53 | ″ | ″ | formation time |
54 | ″ | ″ | further characterisation |
55 | ″ | ″ | integral part |
56 | ″ | ″ | interaction |
57 | ″ | ″ | manipulation |
58 | ″ | ″ | method |
59 | ″ | ″ | methodology |
60 | ″ | ″ | modification |
61 | ″ | ″ | multicellular constructs |
62 | ″ | ″ | necrosis |
63 | ″ | ″ | part |
64 | ″ | ″ | problem |
65 | ″ | ″ | properties |
66 | ″ | ″ | relationship |
67 | ″ | ″ | samples |
68 | ″ | ″ | significant decrease |
69 | ″ | ″ | stem cell interactions |
70 | ″ | ″ | structure |
71 | ″ | ″ | study |
72 | ″ | ″ | surface modification |
73 | ″ | ″ | time |
74 | ″ | ″ | understanding |
75 | ″ | ″ | viability |
76 | ″ | schema:name | Controlled embryoid body formation via surface modification and avidin–biotin cross-linking |
77 | ″ | schema:pagination | 135-144 |
78 | ″ | schema:productId | N5121831968474caea8047ffd3c76e76a |
79 | ″ | ″ | N9ce1f4fa77874f2c8ea98f6f73c62dfb |
80 | ″ | ″ | Ncddb2f55e1be4f8b92b5e073a9ff718d |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032055901 |
82 | ″ | ″ | https://doi.org/10.1007/s10616-010-9255-3 |
83 | ″ | schema:sdDatePublished | 2022-06-01T22:09 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | Nea95a4be56a249738988fe2e593edebb |
86 | ″ | schema:url | https://doi.org/10.1007/s10616-010-9255-3 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | articles |
89 | ″ | rdf:type | schema:ScholarlyArticle |
90 | N070f3dd2427948aab2efbec1fcef83b2 | schema:volumeNumber | 61 |
91 | ″ | rdf:type | schema:PublicationVolume |
92 | N4c34fa7d75454ca2ad1a8e6dc713bbc5 | rdf:first | sg:person.07714345177.42 |
93 | ″ | rdf:rest | Nb76e62e99c874b1987e83049c4af488d |
94 | N4ebcd4d52b0043b296c42df2358326c1 | rdf:first | sg:person.01126667351.78 |
95 | ″ | rdf:rest | N4c34fa7d75454ca2ad1a8e6dc713bbc5 |
96 | N5121831968474caea8047ffd3c76e76a | schema:name | doi |
97 | ″ | schema:value | 10.1007/s10616-010-9255-3 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N9650e72646cf4585ac5352214c18e157 | rdf:first | sg:person.01044562053.52 |
100 | ″ | rdf:rest | N4ebcd4d52b0043b296c42df2358326c1 |
101 | N9ce1f4fa77874f2c8ea98f6f73c62dfb | schema:name | pubmed_id |
102 | ″ | schema:value | 20145998 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | Nb4e8317b96d44c85b613fdb6e1be32d2 | schema:issueNumber | 3 |
105 | ″ | rdf:type | schema:PublicationIssue |
106 | Nb76e62e99c874b1987e83049c4af488d | rdf:first | sg:person.011101227747.44 |
107 | ″ | rdf:rest | rdf:nil |
108 | Ncddb2f55e1be4f8b92b5e073a9ff718d | schema:name | dimensions_id |
109 | ″ | schema:value | pub.1032055901 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | Nea95a4be56a249738988fe2e593edebb | schema:name | Springer Nature - SN SciGraph project |
112 | ″ | rdf:type | schema:Organization |
113 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Biological Sciences |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Biochemistry and Cell Biology |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | sg:journal.1086307 | schema:issn | 1381-5741 |
120 | ″ | ″ | 1573-0603 |
121 | ″ | schema:name | Cytotechnology |
122 | ″ | schema:publisher | Springer Nature |
123 | ″ | rdf:type | schema:Periodical |
124 | sg:person.01044562053.52 | schema:affiliation | grid-institutes:grid.4563.4 |
125 | ″ | schema:familyName | Gothard |
126 | ″ | schema:givenName | David |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044562053.52 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.011101227747.44 | schema:affiliation | grid-institutes:grid.4563.4 |
130 | ″ | schema:familyName | Buttery |
131 | ″ | schema:givenName | Lee D. |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101227747.44 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.01126667351.78 | schema:affiliation | grid-institutes:grid.5596.f |
135 | ″ | schema:familyName | Roberts |
136 | ″ | schema:givenName | Scott J. |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126667351.78 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.07714345177.42 | schema:affiliation | grid-institutes:grid.4563.4 |
140 | ″ | schema:familyName | Shakesheff |
141 | ″ | schema:givenName | Kevin M. |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714345177.42 |
143 | ″ | rdf:type | schema:Person |
144 | sg:pub.10.1007/bf03401776 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1074655583 |
145 | ″ | ″ | https://doi.org/10.1007/bf03401776 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1007/s10495-005-2946-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042828864 |
148 | ″ | ″ | https://doi.org/10.1007/s10495-005-2946-0 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1038/323445a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047908913 |
151 | ″ | ″ | https://doi.org/10.1038/323445a0 |
152 | ″ | rdf:type | schema:CreativeWork |
153 | sg:pub.10.1038/labinvest.3780380 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007638244 |
154 | ″ | ″ | https://doi.org/10.1038/labinvest.3780380 |
155 | ″ | rdf:type | schema:CreativeWork |
156 | sg:pub.10.1186/1471-213x-9-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028641972 |
157 | ″ | ″ | https://doi.org/10.1186/1471-213x-9-5 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | grid-institutes:grid.4563.4 | schema:alternateName | STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK |
160 | ″ | schema:name | STEM, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK |
161 | ″ | rdf:type | schema:Organization |
162 | grid-institutes:grid.5596.f | schema:alternateName | Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O&N 1, Herestraat 49 bus 813, 3000, Leuven, Belgium |
163 | ″ | schema:name | Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O&N 1, Herestraat 49 bus 813, 3000, Leuven, Belgium |
164 | ″ | rdf:type | schema:Organization |