Ontology type: schema:ScholarlyArticle
2020-03-30
AUTHORS ABSTRACTThe autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies f∈(0,0.5]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in (0,0.5]$$\end{document}) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence. More... »
PAGES773-790
http://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1
DOIhttp://dx.doi.org/10.1007/s10614-020-09977-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1126007577
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Commerce, Management, Tourism and Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Econometrics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1499",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Banking, Finance and Investment",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA",
"id": "http://www.grid.ac/institutes/grid.263864.d",
"name": [
"Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA"
],
"type": "Organization"
},
"familyName": "Xing",
"givenName": "Yixun",
"id": "sg:person.014143614713.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143614713.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA",
"id": "http://www.grid.ac/institutes/grid.263864.d",
"name": [
"Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA"
],
"type": "Organization"
},
"familyName": "Woodward",
"givenName": "Wayne A.",
"id": "sg:person.013707166007.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707166007.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10614-014-9471-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016906233",
"https://doi.org/10.1007/s10614-014-9471-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1025702003631",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044194797",
"https://doi.org/10.1023/a:1025702003631"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.2307/1400511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069472672",
"https://doi.org/10.2307/1400511"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-03-30",
"datePublishedReg": "2020-03-30",
"description": "The autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies f\u2208(0,0.5]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f\\in (0,0.5]$$\\end{document}) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence.",
"genre": "article",
"id": "sg:pub.10.1007/s10614-020-09977-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136328",
"issn": [
"0927-7099",
"1572-9974"
],
"name": "Computational Economics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "57"
}
],
"keywords": [
"memory processes",
"memory",
"memory behavior",
"behavior",
"short memory process",
"basic model",
"process",
"test",
"long memory processes",
"integration",
"bootstrap procedure",
"assessment",
"results",
"same time",
"authors",
"model",
"integration type",
"statistics",
"work",
"testing",
"parametric bootstrap procedure",
"significance level",
"levels",
"types",
"long memory",
"time",
"data",
"procedure",
"power",
"long-range dependence",
"long memory behavior",
"method",
"test statistic",
"dependence",
"presence",
"autocorrelation",
"estimator",
"simulation results",
"range dependence",
"fractional integration",
"Gegenbauer",
"parameter estimator",
"reasonable power",
"observed significance level",
"lynx data"
],
"name": "R-Squared-Bootstrapping for Gegenbauer-Type Long Memory",
"pagination": "773-790",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1126007577"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10614-020-09977-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10614-020-09977-1",
"https://app.dimensions.ai/details/publication/pub.1126007577"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_832.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10614-020-09977-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'
This table displays all metadata directly associated to this object as RDF triples.
134 TRIPLES
22 PREDICATES
76 URIs
62 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10614-020-09977-1 | schema:about | anzsrc-for:14 |
2 | ″ | ″ | anzsrc-for:1403 |
3 | ″ | ″ | anzsrc-for:1499 |
4 | ″ | ″ | anzsrc-for:15 |
5 | ″ | ″ | anzsrc-for:1502 |
6 | ″ | schema:author | Nc52bde8ea3ac4918970ff33290e8034c |
7 | ″ | schema:citation | sg:pub.10.1007/s10614-014-9471-6 |
8 | ″ | ″ | sg:pub.10.1023/a:1025702003631 |
9 | ″ | ″ | sg:pub.10.2307/1400511 |
10 | ″ | schema:datePublished | 2020-03-30 |
11 | ″ | schema:datePublishedReg | 2020-03-30 |
12 | ″ | schema:description | The autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies f∈(0,0.5]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in (0,0.5]$$\end{document}) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N33afbc2f04ae48daba6762eed5776073 |
17 | ″ | ″ | N7e0c55643a824300811357029cfa5597 |
18 | ″ | ″ | sg:journal.1136328 |
19 | ″ | schema:keywords | Gegenbauer |
20 | ″ | ″ | assessment |
21 | ″ | ″ | authors |
22 | ″ | ″ | autocorrelation |
23 | ″ | ″ | basic model |
24 | ″ | ″ | behavior |
25 | ″ | ″ | bootstrap procedure |
26 | ″ | ″ | data |
27 | ″ | ″ | dependence |
28 | ″ | ″ | estimator |
29 | ″ | ″ | fractional integration |
30 | ″ | ″ | integration |
31 | ″ | ″ | integration type |
32 | ″ | ″ | levels |
33 | ″ | ″ | long memory |
34 | ″ | ″ | long memory behavior |
35 | ″ | ″ | long memory processes |
36 | ″ | ″ | long-range dependence |
37 | ″ | ″ | lynx data |
38 | ″ | ″ | memory |
39 | ″ | ″ | memory behavior |
40 | ″ | ″ | memory processes |
41 | ″ | ″ | method |
42 | ″ | ″ | model |
43 | ″ | ″ | observed significance level |
44 | ″ | ″ | parameter estimator |
45 | ″ | ″ | parametric bootstrap procedure |
46 | ″ | ″ | power |
47 | ″ | ″ | presence |
48 | ″ | ″ | procedure |
49 | ″ | ″ | process |
50 | ″ | ″ | range dependence |
51 | ″ | ″ | reasonable power |
52 | ″ | ″ | results |
53 | ″ | ″ | same time |
54 | ″ | ″ | short memory process |
55 | ″ | ″ | significance level |
56 | ″ | ″ | simulation results |
57 | ″ | ″ | statistics |
58 | ″ | ″ | test |
59 | ″ | ″ | test statistic |
60 | ″ | ″ | testing |
61 | ″ | ″ | time |
62 | ″ | ″ | types |
63 | ″ | ″ | work |
64 | ″ | schema:name | R-Squared-Bootstrapping for Gegenbauer-Type Long Memory |
65 | ″ | schema:pagination | 773-790 |
66 | ″ | schema:productId | N33960f945d17437ea6a9ac7d25c74697 |
67 | ″ | ″ | N5fe70d5f0d4247ac90d16fc7fd167abd |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1126007577 |
69 | ″ | ″ | https://doi.org/10.1007/s10614-020-09977-1 |
70 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N5b0063a5835c423393873b305613b3d6 |
73 | ″ | schema:url | https://doi.org/10.1007/s10614-020-09977-1 |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | articles |
76 | ″ | rdf:type | schema:ScholarlyArticle |
77 | N33960f945d17437ea6a9ac7d25c74697 | schema:name | dimensions_id |
78 | ″ | schema:value | pub.1126007577 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | N33afbc2f04ae48daba6762eed5776073 | schema:issueNumber | 2 |
81 | ″ | rdf:type | schema:PublicationIssue |
82 | N5b0063a5835c423393873b305613b3d6 | schema:name | Springer Nature - SN SciGraph project |
83 | ″ | rdf:type | schema:Organization |
84 | N5fe70d5f0d4247ac90d16fc7fd167abd | schema:name | doi |
85 | ″ | schema:value | 10.1007/s10614-020-09977-1 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N7e0c55643a824300811357029cfa5597 | schema:volumeNumber | 57 |
88 | ″ | rdf:type | schema:PublicationVolume |
89 | Nbbb32b46b1c344c68bcb79838dd5487d | rdf:first | sg:person.013707166007.62 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nc52bde8ea3ac4918970ff33290e8034c | rdf:first | sg:person.014143614713.17 |
92 | ″ | rdf:rest | Nbbb32b46b1c344c68bcb79838dd5487d |
93 | anzsrc-for:14 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Economics |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:1403 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Econometrics |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | anzsrc-for:1499 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Other Economics |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:15 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Commerce, Management, Tourism and Services |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:1502 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Banking, Finance and Investment |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1136328 | schema:issn | 0927-7099 |
109 | ″ | ″ | 1572-9974 |
110 | ″ | schema:name | Computational Economics |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.013707166007.62 | schema:affiliation | grid-institutes:grid.263864.d |
114 | ″ | schema:familyName | Woodward |
115 | ″ | schema:givenName | Wayne A. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707166007.62 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.014143614713.17 | schema:affiliation | grid-institutes:grid.263864.d |
119 | ″ | schema:familyName | |
120 | ″ | schema:givenName | Yixun |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143614713.17 |
122 | ″ | rdf:type | schema:Person |
123 | sg:pub.10.1007/s10614-014-9471-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016906233 |
124 | ″ | ″ | https://doi.org/10.1007/s10614-014-9471-6 |
125 | ″ | rdf:type | schema:CreativeWork |
126 | sg:pub.10.1023/a:1025702003631 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044194797 |
127 | ″ | ″ | https://doi.org/10.1023/a:1025702003631 |
128 | ″ | rdf:type | schema:CreativeWork |
129 | sg:pub.10.2307/1400511 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1069472672 |
130 | ″ | ″ | https://doi.org/10.2307/1400511 |
131 | ″ | rdf:type | schema:CreativeWork |
132 | grid-institutes:grid.263864.d | schema:alternateName | Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA |
133 | ″ | schema:name | Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA |
134 | ″ | rdf:type | schema:Organization |