R-Squared-Bootstrapping for Gegenbauer-Type Long Memory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-03-30

AUTHORS

Yixun Xing, Wayne A. Woodward

ABSTRACT

The autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies f∈(0,0.5]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in (0,0.5]$$\end{document}) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence. More... »

PAGES

773-790

References to SciGraph publications

  • 1997-12. Improved Tests for Trend in Time Series Data in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 2003-08. On the Power of R/S-Type Tests under Contiguous and Semi-Long Memory Alternatives in ACTA APPLICANDAE MATHEMATICAE
  • 2014-10-30. Wavelet Estimation of Gegenbauer Processes: Simulation and Empirical Application in COMPUTATIONAL ECONOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1

    DOI

    http://dx.doi.org/10.1007/s10614-020-09977-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1126007577


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Econometrics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1499", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Banking, Finance and Investment", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.263864.d", 
              "name": [
                "Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Yixun", 
            "id": "sg:person.014143614713.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143614713.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.263864.d", 
              "name": [
                "Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woodward", 
            "givenName": "Wayne A.", 
            "id": "sg:person.013707166007.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707166007.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10614-014-9471-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016906233", 
              "https://doi.org/10.1007/s10614-014-9471-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025702003631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044194797", 
              "https://doi.org/10.1023/a:1025702003631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2307/1400511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069472672", 
              "https://doi.org/10.2307/1400511"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-03-30", 
        "datePublishedReg": "2020-03-30", 
        "description": "The autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies f\u2208(0,0.5]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f\\in (0,0.5]$$\\end{document}) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10614-020-09977-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136328", 
            "issn": [
              "0927-7099", 
              "1572-9974"
            ], 
            "name": "Computational Economics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "57"
          }
        ], 
        "keywords": [
          "memory processes", 
          "memory", 
          "memory behavior", 
          "behavior", 
          "short memory process", 
          "basic model", 
          "process", 
          "test", 
          "long memory processes", 
          "integration", 
          "bootstrap procedure", 
          "assessment", 
          "results", 
          "same time", 
          "authors", 
          "model", 
          "integration type", 
          "statistics", 
          "work", 
          "testing", 
          "parametric bootstrap procedure", 
          "significance level", 
          "levels", 
          "types", 
          "long memory", 
          "time", 
          "data", 
          "procedure", 
          "power", 
          "long-range dependence", 
          "long memory behavior", 
          "method", 
          "test statistic", 
          "dependence", 
          "presence", 
          "autocorrelation", 
          "estimator", 
          "simulation results", 
          "range dependence", 
          "fractional integration", 
          "Gegenbauer", 
          "parameter estimator", 
          "reasonable power", 
          "observed significance level", 
          "lynx data"
        ], 
        "name": "R-Squared-Bootstrapping for Gegenbauer-Type Long Memory", 
        "pagination": "773-790", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1126007577"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10614-020-09977-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10614-020-09977-1", 
          "https://app.dimensions.ai/details/publication/pub.1126007577"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_832.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10614-020-09977-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10614-020-09977-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      22 PREDICATES      76 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10614-020-09977-1 schema:about anzsrc-for:14
    2 anzsrc-for:1403
    3 anzsrc-for:1499
    4 anzsrc-for:15
    5 anzsrc-for:1502
    6 schema:author Nc52bde8ea3ac4918970ff33290e8034c
    7 schema:citation sg:pub.10.1007/s10614-014-9471-6
    8 sg:pub.10.1023/a:1025702003631
    9 sg:pub.10.2307/1400511
    10 schema:datePublished 2020-03-30
    11 schema:datePublishedReg 2020-03-30
    12 schema:description The autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies f∈(0,0.5]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in (0,0.5]$$\end{document}) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N33afbc2f04ae48daba6762eed5776073
    17 N7e0c55643a824300811357029cfa5597
    18 sg:journal.1136328
    19 schema:keywords Gegenbauer
    20 assessment
    21 authors
    22 autocorrelation
    23 basic model
    24 behavior
    25 bootstrap procedure
    26 data
    27 dependence
    28 estimator
    29 fractional integration
    30 integration
    31 integration type
    32 levels
    33 long memory
    34 long memory behavior
    35 long memory processes
    36 long-range dependence
    37 lynx data
    38 memory
    39 memory behavior
    40 memory processes
    41 method
    42 model
    43 observed significance level
    44 parameter estimator
    45 parametric bootstrap procedure
    46 power
    47 presence
    48 procedure
    49 process
    50 range dependence
    51 reasonable power
    52 results
    53 same time
    54 short memory process
    55 significance level
    56 simulation results
    57 statistics
    58 test
    59 test statistic
    60 testing
    61 time
    62 types
    63 work
    64 schema:name R-Squared-Bootstrapping for Gegenbauer-Type Long Memory
    65 schema:pagination 773-790
    66 schema:productId N33960f945d17437ea6a9ac7d25c74697
    67 N5fe70d5f0d4247ac90d16fc7fd167abd
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126007577
    69 https://doi.org/10.1007/s10614-020-09977-1
    70 schema:sdDatePublished 2022-05-20T07:37
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N5b0063a5835c423393873b305613b3d6
    73 schema:url https://doi.org/10.1007/s10614-020-09977-1
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N33960f945d17437ea6a9ac7d25c74697 schema:name dimensions_id
    78 schema:value pub.1126007577
    79 rdf:type schema:PropertyValue
    80 N33afbc2f04ae48daba6762eed5776073 schema:issueNumber 2
    81 rdf:type schema:PublicationIssue
    82 N5b0063a5835c423393873b305613b3d6 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N5fe70d5f0d4247ac90d16fc7fd167abd schema:name doi
    85 schema:value 10.1007/s10614-020-09977-1
    86 rdf:type schema:PropertyValue
    87 N7e0c55643a824300811357029cfa5597 schema:volumeNumber 57
    88 rdf:type schema:PublicationVolume
    89 Nbbb32b46b1c344c68bcb79838dd5487d rdf:first sg:person.013707166007.62
    90 rdf:rest rdf:nil
    91 Nc52bde8ea3ac4918970ff33290e8034c rdf:first sg:person.014143614713.17
    92 rdf:rest Nbbb32b46b1c344c68bcb79838dd5487d
    93 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Economics
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Econometrics
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:1499 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Other Economics
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Commerce, Management, Tourism and Services
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Banking, Finance and Investment
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1136328 schema:issn 0927-7099
    109 1572-9974
    110 schema:name Computational Economics
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.013707166007.62 schema:affiliation grid-institutes:grid.263864.d
    114 schema:familyName Woodward
    115 schema:givenName Wayne A.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707166007.62
    117 rdf:type schema:Person
    118 sg:person.014143614713.17 schema:affiliation grid-institutes:grid.263864.d
    119 schema:familyName Xing
    120 schema:givenName Yixun
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143614713.17
    122 rdf:type schema:Person
    123 sg:pub.10.1007/s10614-014-9471-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016906233
    124 https://doi.org/10.1007/s10614-014-9471-6
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1023/a:1025702003631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044194797
    127 https://doi.org/10.1023/a:1025702003631
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.2307/1400511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069472672
    130 https://doi.org/10.2307/1400511
    131 rdf:type schema:CreativeWork
    132 grid-institutes:grid.263864.d schema:alternateName Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA
    133 schema:name Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, 6425 Boaz Lane, 75205, Dallas, TX, USA
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...