Entropy and Efficiency of the ETF Market View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-06

AUTHORS

Lucio Maria Calcagnile, Fulvio Corsi, Stefano Marmi

ABSTRACT

We investigate the relative information efficiency of financial markets by measuring the entropy of the time series of high frequency data. Our tool to measure efficiency is the Shannon entropy, applied to 2-symbol and 3-symbol discretisations of the data. Analysing 1-min and 5-min price time series of 55 Exchange Traded Funds traded at the New York Stock Exchange, we develop a methodology to isolate residual inefficiencies from other sources of regularities, such as the intraday pattern, the volatility clustering and the microstructure effects. The first two are modelled as multiplicative factors, while the microstructure is modelled as an ARMA noise process. Following an analytical and empirical combined approach, we find a strong relationship between low entropy and high relative tick size and that volatility is responsible for the largest amount of regularity, averaging 62% of the total regularity against 18% of the intraday pattern regularity and 20% of the microstructure. More... »

PAGES

1-42

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10614-019-09885-z

DOI

http://dx.doi.org/10.1007/s10614-019-09885-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111949355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, piazza dei Cavalieri, 7, 56126, Pisa, Italy", 
            "LIST S.p.A., via Pietrasantina, 123, 56122, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calcagnile", 
        "givenName": "Lucio Maria", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Universit\u00e0 di Pisa, via Ridolfi, 10, 56124, Pisa, Italy", 
            "City, University of London, Northampton Square \u2013 London EC1V 0HB, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corsi", 
        "givenName": "Fulvio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, piazza dei Cavalieri, 7, 56126, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marmi", 
        "givenName": "Stefano", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.csda.2006.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001659024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-5398(97)00004-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010105253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17446540802216219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013553315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2010.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016209341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10614-008-9153-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041034408", 
          "https://doi.org/10.1007/s10614-008-9153-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10614-008-9153-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041034408", 
          "https://doi.org/10.1007/s10614-008-9153-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041701836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200048804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043783179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026198216929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049769521", 
          "https://doi.org/10.1023/a:1026198216929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2004.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050954824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jjfinec/nbh001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059803236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/84/48005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064232293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400839254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096912680"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-06", 
    "datePublishedReg": "2019-02-06", 
    "description": "We investigate the relative information efficiency of financial markets by measuring the entropy of the time series of high frequency data. Our tool to measure efficiency is the Shannon entropy, applied to 2-symbol and 3-symbol discretisations of the data. Analysing 1-min and 5-min price time series of 55 Exchange Traded Funds traded at the New York Stock Exchange, we develop a methodology to isolate residual inefficiencies from other sources of regularities, such as the intraday pattern, the volatility clustering and the microstructure effects. The first two are modelled as multiplicative factors, while the microstructure is modelled as an ARMA noise process. Following an analytical and empirical combined approach, we find a strong relationship between low entropy and high relative tick size and that volatility is responsible for the largest amount of regularity, averaging 62% of the total regularity against 18% of the intraday pattern regularity and 20% of the microstructure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10614-019-09885-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136328", 
        "issn": [
          "0927-7099", 
          "1572-9974"
        ], 
        "name": "Computational Economics", 
        "type": "Periodical"
      }
    ], 
    "name": "Entropy and Efficiency of the ETF Market", 
    "pagination": "1-42", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "818593cb686dcc0569900224347dc015c4566ef314d0c8f358f41f460c90850e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10614-019-09885-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111949355"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10614-019-09885-z", 
      "https://app.dimensions.ai/details/publication/pub.1111949355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105412_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10614-019-09885-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10614-019-09885-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10614-019-09885-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10614-019-09885-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10614-019-09885-z'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      37 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10614-019-09885-z schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author Nf5366be11c8749aa869518a5dc808d1d
4 schema:citation sg:pub.10.1007/s10614-008-9153-3
5 sg:pub.10.1023/a:1026198216929
6 https://doi.org/10.1016/j.chaos.2004.02.005
7 https://doi.org/10.1016/j.csda.2006.09.030
8 https://doi.org/10.1016/j.jeconom.2010.03.028
9 https://doi.org/10.1016/j.physa.2007.02.032
10 https://doi.org/10.1016/s0927-5398(97)00004-2
11 https://doi.org/10.1017/s0021900200048804
12 https://doi.org/10.1080/17446540802216219
13 https://doi.org/10.1093/jjfinec/nbh001
14 https://doi.org/10.1209/0295-5075/84/48005
15 https://doi.org/10.1515/9781400839254
16 https://doi.org/10.2307/3212735
17 schema:datePublished 2019-02-06
18 schema:datePublishedReg 2019-02-06
19 schema:description We investigate the relative information efficiency of financial markets by measuring the entropy of the time series of high frequency data. Our tool to measure efficiency is the Shannon entropy, applied to 2-symbol and 3-symbol discretisations of the data. Analysing 1-min and 5-min price time series of 55 Exchange Traded Funds traded at the New York Stock Exchange, we develop a methodology to isolate residual inefficiencies from other sources of regularities, such as the intraday pattern, the volatility clustering and the microstructure effects. The first two are modelled as multiplicative factors, while the microstructure is modelled as an ARMA noise process. Following an analytical and empirical combined approach, we find a strong relationship between low entropy and high relative tick size and that volatility is responsible for the largest amount of regularity, averaging 62% of the total regularity against 18% of the intraday pattern regularity and 20% of the microstructure.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf sg:journal.1136328
24 schema:name Entropy and Efficiency of the ETF Market
25 schema:pagination 1-42
26 schema:productId N1ac8a497287349539d642b9c298f3cf8
27 N3c306c460b5b48139366891263af6461
28 Nbb9c23fc5ec6417c9cc21cbabae4a0a3
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949355
30 https://doi.org/10.1007/s10614-019-09885-z
31 schema:sdDatePublished 2019-04-11T09:02
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N24e1c9c19dbb4fbcbef739371ccafa1c
34 schema:url https://link.springer.com/10.1007%2Fs10614-019-09885-z
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N1ac8a497287349539d642b9c298f3cf8 schema:name readcube_id
39 schema:value 818593cb686dcc0569900224347dc015c4566ef314d0c8f358f41f460c90850e
40 rdf:type schema:PropertyValue
41 N24e1c9c19dbb4fbcbef739371ccafa1c schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N3c306c460b5b48139366891263af6461 schema:name dimensions_id
44 schema:value pub.1111949355
45 rdf:type schema:PropertyValue
46 N54b57e0e9c274aac9fbe95d52be1fd8d schema:affiliation https://www.grid.ac/institutes/grid.6093.c
47 schema:familyName Calcagnile
48 schema:givenName Lucio Maria
49 rdf:type schema:Person
50 N64d3c12f018d423badc0c653a02bfa87 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
51 schema:familyName Corsi
52 schema:givenName Fulvio
53 rdf:type schema:Person
54 N6a4db38a6c3a4d829e754a37eb2be4a9 rdf:first N64d3c12f018d423badc0c653a02bfa87
55 rdf:rest Nac0a2d5d73714a4c8f3daab89fb75e73
56 Nac0a2d5d73714a4c8f3daab89fb75e73 rdf:first Nf944f700b649449fb2119922646cf31b
57 rdf:rest rdf:nil
58 Nbb9c23fc5ec6417c9cc21cbabae4a0a3 schema:name doi
59 schema:value 10.1007/s10614-019-09885-z
60 rdf:type schema:PropertyValue
61 Nf5366be11c8749aa869518a5dc808d1d rdf:first N54b57e0e9c274aac9fbe95d52be1fd8d
62 rdf:rest N6a4db38a6c3a4d829e754a37eb2be4a9
63 Nf944f700b649449fb2119922646cf31b schema:affiliation https://www.grid.ac/institutes/grid.6093.c
64 schema:familyName Marmi
65 schema:givenName Stefano
66 rdf:type schema:Person
67 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
68 schema:name Economics
69 rdf:type schema:DefinedTerm
70 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
71 schema:name Econometrics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136328 schema:issn 0927-7099
74 1572-9974
75 schema:name Computational Economics
76 rdf:type schema:Periodical
77 sg:pub.10.1007/s10614-008-9153-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041034408
78 https://doi.org/10.1007/s10614-008-9153-3
79 rdf:type schema:CreativeWork
80 sg:pub.10.1023/a:1026198216929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049769521
81 https://doi.org/10.1023/a:1026198216929
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.chaos.2004.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050954824
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.csda.2006.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001659024
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.jeconom.2010.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016209341
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.physa.2007.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041701836
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0927-5398(97)00004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010105253
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0021900200048804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043783179
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1080/17446540802216219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013553315
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1093/jjfinec/nbh001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059803236
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1209/0295-5075/84/48005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064232293
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1515/9781400839254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096912680
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2307/3212735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226939
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
106 schema:name LIST S.p.A., via Pietrasantina, 123, 56122, Pisa, Italy
107 Scuola Normale Superiore, piazza dei Cavalieri, 7, 56126, Pisa, Italy
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
110 schema:name City, University of London, Northampton Square – London EC1V 0HB, London, UK
111 Università di Pisa, via Ridolfi, 10, 56124, Pisa, Italy
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...