Mining Time-constrained Sequential Patterns with Constraint Programming View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

John O. R. Aoga, Tias Guns, Pierre Schaus

ABSTRACT

Constraint Programming (CP) has proven to be an effective platform for constraint based sequence mining. Previous work has focused on standard frequent sequence mining, as well as frequent sequence mining with a maximum ’gap’ between two matching events in a sequence. The main challenge in the latter is that this constraint can not be imposed independently of the omnipresent frequency constraint. Indeed, the gap constraint changes whether a subsequence is included in a sequence, and hence its frequency. In this work, we go beyond that and investigate the integration of timed events and constraining the minimum/maximum gap as well as minimum/maximum span. The latter constrains the allowed time between the first and last matching event of a pattern. We show how the three are interrelated, and what the required changes to the frequency constraint are. Key in our approach is the concept of an extension window defined by gap/span and we develop techniques to avoid scanning the sequences needlessly, as well as using a backtracking-aware data structure. Experiments demonstrate that the proposed approach outperforms both specialized and CP-based approaches in almost all cases and that the advantage increases as the minimum frequency threshold decreases. This paper is an extension of the original manuscript presented at CPAIOR’17 [5]. More... »

PAGES

548-570

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10601-017-9272-3

DOI

http://dx.doi.org/10.1007/s10601-017-9272-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085906944


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 d'Abomey-Calavi", 
          "id": "https://www.grid.ac/institutes/grid.412037.3", 
          "name": [
            "Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Universit\u00e9 catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium", 
            "Ecole Doctorale Science de l\u2019Ing\u00e9nieur (ED-SDI), Universit\u00e9 d\u2019Abomey-Calavi (UAC), Calavi, B\u00e9nin"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aoga", 
        "givenName": "John O. R.", 
        "id": "sg:person.012414244133.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012414244133.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Vrije Universiteit Brussel (VUB), Brussels, Belgium", 
            "Katholieke Universiteit Leuven, Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guns", 
        "givenName": "Tias", 
        "id": "sg:person.015074144413.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074144413.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Universit\u00e9 catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaus", 
        "givenName": "Pierre", 
        "id": "sg:person.016270221351.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016270221351.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-08407-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000892962", 
          "https://doi.org/10.1007/978-3-319-08407-7_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001833477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009748302351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005237640", 
          "https://doi.org/10.1023/a:1009748302351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45065-3_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006376606", 
          "https://doi.org/10.1007/3-540-45065-3_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45065-3_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006376606", 
          "https://doi.org/10.1007/3-540-45065-3_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-07821-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009761760", 
          "https://doi.org/10.1007/978-3-319-07821-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-07821-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009761760", 
          "https://doi.org/10.1007/978-3-319-07821-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11889205_64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012781170", 
          "https://doi.org/10.1007/11889205_64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11889205_64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012781170", 
          "https://doi.org/10.1007/11889205_64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/354756.354849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016486740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:dami.0000005258.31418.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019489501", 
          "https://doi.org/10.1023/b:dami.0000005258.31418.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-53914-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020965478", 
          "https://doi.org/10.1007/978-3-642-53914-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021725769", 
          "https://doi.org/10.1186/1471-2105-15-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021725769", 
          "https://doi.org/10.1186/1471-2105-15-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-33954-2_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097538", 
          "https://doi.org/10.1007/978-3-319-33954-2_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/23311916.2015.1072292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024543863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775047.775109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025571209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-016-9252-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026007441", 
          "https://doi.org/10.1007/s10601-016-9252-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-016-9252-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026007441", 
          "https://doi.org/10.1007/s10601-016-9252-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-009-9073-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026587164", 
          "https://doi.org/10.1007/s10601-009-9073-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-009-9073-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026587164", 
          "https://doi.org/10.1007/s10601-009-9073-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-009-9073-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026587164", 
          "https://doi.org/10.1007/s10601-009-9073-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46227-1_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026734858", 
          "https://doi.org/10.1007/978-3-319-46227-1_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-7177(94)90127-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028829495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-23219-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028894666", 
          "https://doi.org/10.1007/978-3-319-23219-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40627-0_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034085083", 
          "https://doi.org/10.1007/978-3-642-40627-0_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/319950.320010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034089994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30201-8_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044615390", 
          "https://doi.org/10.1007/978-3-540-30201-8_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30201-8_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044615390", 
          "https://doi.org/10.1007/978-3-540-30201-8_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-18008-3_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046309836", 
          "https://doi.org/10.1007/978-3-319-18008-3_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2020408.2020589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046717905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-006-0006-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048744303", 
          "https://doi.org/10.1007/s10844-006-0006-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/502585.502600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049040156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/288627.288643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049920689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0014140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050497818", 
          "https://doi.org/10.1007/bfb0014140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2011.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972733.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088799903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972788.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.1995.380415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094007712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2011.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094032262"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "Constraint Programming (CP) has proven to be an effective platform for constraint based sequence mining. Previous work has focused on standard frequent sequence mining, as well as frequent sequence mining with a maximum \u2019gap\u2019 between two matching events in a sequence. The main challenge in the latter is that this constraint can not be imposed independently of the omnipresent frequency constraint. Indeed, the gap constraint changes whether a subsequence is included in a sequence, and hence its frequency. In this work, we go beyond that and investigate the integration of timed events and constraining the minimum/maximum gap as well as minimum/maximum span. The latter constrains the allowed time between the first and last matching event of a pattern. We show how the three are interrelated, and what the required changes to the frequency constraint are. Key in our approach is the concept of an extension window defined by gap/span and we develop techniques to avoid scanning the sequences needlessly, as well as using a backtracking-aware data structure. Experiments demonstrate that the proposed approach outperforms both specialized and CP-based approaches in almost all cases and that the advantage increases as the minimum frequency threshold decreases. This paper is an extension of the original manuscript presented at CPAIOR\u201917 [5].", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10601-017-9272-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043977", 
        "issn": [
          "1383-7133", 
          "1572-9354"
        ], 
        "name": "Constraints", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Mining Time-constrained Sequential Patterns with Constraint Programming", 
    "pagination": "548-570", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "125da7ef3af3873fa1b40950a4e306e79f71fa9b51b39d7bd3f13c007e23f22d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10601-017-9272-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085906944"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10601-017-9272-3", 
      "https://app.dimensions.ai/details/publication/pub.1085906944"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99829_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10601-017-9272-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9272-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9272-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9272-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9272-3'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10601-017-9272-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf3fa44c786ba4d65b34a639b6a16f691
4 schema:citation sg:pub.10.1007/11889205_64
5 sg:pub.10.1007/3-540-45065-3_21
6 sg:pub.10.1007/978-3-319-07821-2
7 sg:pub.10.1007/978-3-319-08407-7_7
8 sg:pub.10.1007/978-3-319-18008-3_20
9 sg:pub.10.1007/978-3-319-23219-5_17
10 sg:pub.10.1007/978-3-319-33954-2_15
11 sg:pub.10.1007/978-3-319-46227-1_20
12 sg:pub.10.1007/978-3-540-30201-8_36
13 sg:pub.10.1007/978-3-642-40627-0_31
14 sg:pub.10.1007/978-3-642-53914-5_15
15 sg:pub.10.1007/bfb0014140
16 sg:pub.10.1007/s10601-009-9073-4
17 sg:pub.10.1007/s10601-016-9252-z
18 sg:pub.10.1007/s10844-006-0006-z
19 sg:pub.10.1023/a:1009748302351
20 sg:pub.10.1023/b:dami.0000005258.31418.83
21 sg:pub.10.1186/1471-2105-15-130
22 https://doi.org/10.1016/0895-7177(94)90127-9
23 https://doi.org/10.1080/23311916.2015.1072292
24 https://doi.org/10.1109/icde.1995.380415
25 https://doi.org/10.1109/icdmw.2011.11
26 https://doi.org/10.1109/tkde.2007.1043
27 https://doi.org/10.1109/tkde.2011.204
28 https://doi.org/10.1137/1.9781611972733.15
29 https://doi.org/10.1137/1.9781611972788.28
30 https://doi.org/10.1145/2020408.2020589
31 https://doi.org/10.1145/2339530.2339578
32 https://doi.org/10.1145/288627.288643
33 https://doi.org/10.1145/319950.320010
34 https://doi.org/10.1145/354756.354849
35 https://doi.org/10.1145/502585.502600
36 https://doi.org/10.1145/775047.775109
37 schema:datePublished 2017-10
38 schema:datePublishedReg 2017-10-01
39 schema:description Constraint Programming (CP) has proven to be an effective platform for constraint based sequence mining. Previous work has focused on standard frequent sequence mining, as well as frequent sequence mining with a maximum ’gap’ between two matching events in a sequence. The main challenge in the latter is that this constraint can not be imposed independently of the omnipresent frequency constraint. Indeed, the gap constraint changes whether a subsequence is included in a sequence, and hence its frequency. In this work, we go beyond that and investigate the integration of timed events and constraining the minimum/maximum gap as well as minimum/maximum span. The latter constrains the allowed time between the first and last matching event of a pattern. We show how the three are interrelated, and what the required changes to the frequency constraint are. Key in our approach is the concept of an extension window defined by gap/span and we develop techniques to avoid scanning the sequences needlessly, as well as using a backtracking-aware data structure. Experiments demonstrate that the proposed approach outperforms both specialized and CP-based approaches in almost all cases and that the advantage increases as the minimum frequency threshold decreases. This paper is an extension of the original manuscript presented at CPAIOR’17 [5].
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N12256450770f45d9b13f64e048db3f9b
44 Nd22b35461fa744dfb9273c6a0e8a46ed
45 sg:journal.1043977
46 schema:name Mining Time-constrained Sequential Patterns with Constraint Programming
47 schema:pagination 548-570
48 schema:productId N20baef2e2bd443ef91cd1848c813b2ff
49 N3ce0bf203a714d8f88cb175a2fa1199c
50 N775118542a85452b8ef7b25c30743235
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085906944
52 https://doi.org/10.1007/s10601-017-9272-3
53 schema:sdDatePublished 2019-04-11T09:37
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nacb4c0dd846540839a134676d36b1854
56 schema:url https://link.springer.com/10.1007%2Fs10601-017-9272-3
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N12256450770f45d9b13f64e048db3f9b schema:volumeNumber 22
61 rdf:type schema:PublicationVolume
62 N20baef2e2bd443ef91cd1848c813b2ff schema:name doi
63 schema:value 10.1007/s10601-017-9272-3
64 rdf:type schema:PropertyValue
65 N3ce0bf203a714d8f88cb175a2fa1199c schema:name readcube_id
66 schema:value 125da7ef3af3873fa1b40950a4e306e79f71fa9b51b39d7bd3f13c007e23f22d
67 rdf:type schema:PropertyValue
68 N775118542a85452b8ef7b25c30743235 schema:name dimensions_id
69 schema:value pub.1085906944
70 rdf:type schema:PropertyValue
71 N7c28d5cc87f5481fa0dbfa2357443511 rdf:first sg:person.015074144413.77
72 rdf:rest N924ca964af3a434e9c4e9e13a6146420
73 N924ca964af3a434e9c4e9e13a6146420 rdf:first sg:person.016270221351.48
74 rdf:rest rdf:nil
75 Nacb4c0dd846540839a134676d36b1854 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nd22b35461fa744dfb9273c6a0e8a46ed schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 Nf3fa44c786ba4d65b34a639b6a16f691 rdf:first sg:person.012414244133.92
80 rdf:rest N7c28d5cc87f5481fa0dbfa2357443511
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:journal.1043977 schema:issn 1383-7133
88 1572-9354
89 schema:name Constraints
90 rdf:type schema:Periodical
91 sg:person.012414244133.92 schema:affiliation https://www.grid.ac/institutes/grid.412037.3
92 schema:familyName Aoga
93 schema:givenName John O. R.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012414244133.92
95 rdf:type schema:Person
96 sg:person.015074144413.77 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
97 schema:familyName Guns
98 schema:givenName Tias
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074144413.77
100 rdf:type schema:Person
101 sg:person.016270221351.48 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
102 schema:familyName Schaus
103 schema:givenName Pierre
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016270221351.48
105 rdf:type schema:Person
106 sg:pub.10.1007/11889205_64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012781170
107 https://doi.org/10.1007/11889205_64
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/3-540-45065-3_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006376606
110 https://doi.org/10.1007/3-540-45065-3_21
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-319-07821-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009761760
113 https://doi.org/10.1007/978-3-319-07821-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-319-08407-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000892962
116 https://doi.org/10.1007/978-3-319-08407-7_7
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-319-18008-3_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046309836
119 https://doi.org/10.1007/978-3-319-18008-3_20
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-319-23219-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028894666
122 https://doi.org/10.1007/978-3-319-23219-5_17
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-319-33954-2_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097538
125 https://doi.org/10.1007/978-3-319-33954-2_15
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-319-46227-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026734858
128 https://doi.org/10.1007/978-3-319-46227-1_20
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-540-30201-8_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044615390
131 https://doi.org/10.1007/978-3-540-30201-8_36
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-642-40627-0_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034085083
134 https://doi.org/10.1007/978-3-642-40627-0_31
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-642-53914-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020965478
137 https://doi.org/10.1007/978-3-642-53914-5_15
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bfb0014140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050497818
140 https://doi.org/10.1007/bfb0014140
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10601-009-9073-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026587164
143 https://doi.org/10.1007/s10601-009-9073-4
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10601-016-9252-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026007441
146 https://doi.org/10.1007/s10601-016-9252-z
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10844-006-0006-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048744303
149 https://doi.org/10.1007/s10844-006-0006-z
150 rdf:type schema:CreativeWork
151 sg:pub.10.1023/a:1009748302351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005237640
152 https://doi.org/10.1023/a:1009748302351
153 rdf:type schema:CreativeWork
154 sg:pub.10.1023/b:dami.0000005258.31418.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019489501
155 https://doi.org/10.1023/b:dami.0000005258.31418.83
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2105-15-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021725769
158 https://doi.org/10.1186/1471-2105-15-130
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0895-7177(94)90127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028829495
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/23311916.2015.1072292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024543863
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/icde.1995.380415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094007712
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/icdmw.2011.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094032262
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tkde.2007.1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661649
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tkde.2011.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662388
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/1.9781611972733.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088799903
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/1.9781611972788.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800261
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/2020408.2020589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046717905
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1145/2339530.2339578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001833477
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/288627.288643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049920689
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1145/319950.320010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034089994
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1145/354756.354849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016486740
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1145/502585.502600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049040156
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1145/775047.775109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025571209
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.412037.3 schema:alternateName Université d'Abomey-Calavi
191 schema:name Ecole Doctorale Science de l’Ingénieur (ED-SDI), Université d’Abomey-Calavi (UAC), Calavi, Bénin
192 Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
195 schema:name Katholieke Universiteit Leuven, Leuven, Belgium
196 Vrije Universiteit Brussel (VUB), Brussels, Belgium
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
199 schema:name Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...