Efficient filtering for the Resource-Cost AllDifferent constraint View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

Sascha Van Cauwelaert, Pierre Schaus

ABSTRACT

This paper studies a family of optimization problems where a set of items, each requiring a possibly different amount of resource, must be assigned to different slots for which the price of the resource can vary. The objective is then to assign items such that the overall resource cost is minimized. Such problems arise commonly in domains such as production scheduling in the presence of fluctuating renewable energy costs or variants of the Travelling Salesman Problem. In Constraint Programming, this can be naturally modeled in two ways: (a) with a sum of element constraints; (b) with a MinimumAssignment constraint. Unfortunately the sum of element constraints obtains a weak filtering and the MinimumAssignment constraint does not scale well on large instances. This work proposes a third approach by introducing the ResourceCostAllDifferent constraint and an associated incremental and scalable filtering algorithm, running in O(n⋅m), where n is the number of unbound variables and m is the maximum domain size of unbound variables. Its goal is to compute the total cost in a scalable manner by dealing with the fact that all assignments must be different. We first evaluate the efficiency of the new filtering on a real industrial problem and then on the Product Matrix Travelling Salesman Problem, a special case of the Asymmetric Travelling Salesman Problem. The study shows experimentally that our approach generally outperforms the decomposition and the MinimumAssignment ones for the problems we considered. More... »

PAGES

493-511

References to SciGraph publications

  • 2002-01. Benchmarking optimization software with performance profiles in MATHEMATICAL PROGRAMMING
  • 2011. A Resource Cost Aware Cumulative in RECENT ADVANCES IN CONSTRAINTS
  • 2016. The TaskIntersection Constraint in INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING
  • 2016. Forward-Checking Filtering for Nested Cardinality Constraints: Application to an Energy Cost-Aware Production Planning Problem for Tissue Manufacturing in INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING
  • 2002-07. Cost-Based Arc Consistency for Global Cardinality Constraints in CONSTRAINTS
  • 2015. Conflict Ordering Search for Scheduling Problems in PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING
  • 2014. Continuous Casting Scheduling with Constraint Programming in PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING
  • 2015. Understanding the Potential of Propagators in INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING
  • 2004. O(nlogn) Filtering Algorithms for Unary Resource Constraint in INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING FOR COMBINATORIAL OPTIMIZATION PROBLEMS
  • 2014. The StockingCost Constraint in PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING
  • 2002. An Arc-Consistency Algorithm for the Minimum Weight All Different Constraint in PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2002
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10601-017-9269-y

    DOI

    http://dx.doi.org/10.1007/s10601-017-9269-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085563797


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Catholique de Louvain", 
              "id": "https://www.grid.ac/institutes/grid.7942.8", 
              "name": [
                "Universit\u00e9 Catholique de Louvain, Place Sainte Barbe 2 bte L5.02.01, 1348, Louvain-la-Neuve, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Cauwelaert", 
            "givenName": "Sascha", 
            "id": "sg:person.012557131067.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557131067.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Catholique de Louvain", 
              "id": "https://www.grid.ac/institutes/grid.7942.8", 
              "name": [
                "Universit\u00e9 Catholique de Louvain, Place Sainte Barbe 2 bte L5.02.01, 1348, Louvain-la-Neuve, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaus", 
            "givenName": "Pierre", 
            "id": "sg:person.016270221351.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016270221351.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-33954-2_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002342073", 
              "https://doi.org/10.1007/978-3-319-33954-2_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-19486-3_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003962101", 
              "https://doi.org/10.1007/978-3-642-19486-3_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-19486-3_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003962101", 
              "https://doi.org/10.1007/978-3-642-19486-3_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-33954-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010011285", 
              "https://doi.org/10.1007/978-3-319-33954-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24664-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014323152", 
              "https://doi.org/10.1007/978-3-540-24664-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24664-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014323152", 
              "https://doi.org/10.1007/978-3-540-24664-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10428-7_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014437114", 
              "https://doi.org/10.1007/978-3-319-10428-7_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-23219-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016789935", 
              "https://doi.org/10.1007/978-3-319-23219-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46135-3_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038682842", 
              "https://doi.org/10.1007/3-540-46135-3_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enpol.2004.07.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038771543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1571-0653(04)00002-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039069593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020506526052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039833510", 
              "https://doi.org/10.1023/a:1020506526052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s101070100263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040788378", 
              "https://doi.org/10.1007/s101070100263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-18008-3_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043190236", 
              "https://doi.org/10.1007/978-3-319-18008-3_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6377(83)90048-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043780918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6377(83)90048-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043780918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijforecast.2014.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046783053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10428-7_59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048263417", 
              "https://doi.org/10.1007/978-3-319-10428-7_59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.35.5.772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064729863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.32.1.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064735452"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10", 
        "datePublishedReg": "2017-10-01", 
        "description": "This paper studies a family of optimization problems where a set of items, each requiring a possibly different amount of resource, must be assigned to different slots for which the price of the resource can vary. The objective is then to assign items such that the overall resource cost is minimized. Such problems arise commonly in domains such as production scheduling in the presence of fluctuating renewable energy costs or variants of the Travelling Salesman Problem. In Constraint Programming, this can be naturally modeled in two ways: (a) with a sum of element constraints; (b) with a MinimumAssignment constraint. Unfortunately the sum of element constraints obtains a weak filtering and the MinimumAssignment constraint does not scale well on large instances. This work proposes a third approach by introducing the ResourceCostAllDifferent constraint and an associated incremental and scalable filtering algorithm, running in O(n\u22c5m), where n is the number of unbound variables and m is the maximum domain size of unbound variables. Its goal is to compute the total cost in a scalable manner by dealing with the fact that all assignments must be different. We first evaluate the efficiency of the new filtering on a real industrial problem and then on the Product Matrix Travelling Salesman Problem, a special case of the Asymmetric Travelling Salesman Problem. The study shows experimentally that our approach generally outperforms the decomposition and the MinimumAssignment ones for the problems we considered.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10601-017-9269-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043977", 
            "issn": [
              "1383-7133", 
              "1572-9354"
            ], 
            "name": "Constraints", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Efficient filtering for the Resource-Cost AllDifferent constraint", 
        "pagination": "493-511", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "872a16743e7719abbaf53ce14d2f16a5c1dae9f6523c0eb51b7afc4e34c16350"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10601-017-9269-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085563797"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10601-017-9269-y", 
          "https://app.dimensions.ai/details/publication/pub.1085563797"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10601-017-9269-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9269-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9269-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9269-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10601-017-9269-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    130 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10601-017-9269-y schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Ne921322285c4447ea387c69827aee58e
    4 schema:citation sg:pub.10.1007/3-540-46135-3_56
    5 sg:pub.10.1007/978-3-319-10428-7_29
    6 sg:pub.10.1007/978-3-319-10428-7_59
    7 sg:pub.10.1007/978-3-319-18008-3_29
    8 sg:pub.10.1007/978-3-319-23219-5_10
    9 sg:pub.10.1007/978-3-319-33954-2_18
    10 sg:pub.10.1007/978-3-319-33954-2_9
    11 sg:pub.10.1007/978-3-540-24664-0_23
    12 sg:pub.10.1007/978-3-642-19486-3_5
    13 sg:pub.10.1007/s101070100263
    14 sg:pub.10.1023/a:1020506526052
    15 https://doi.org/10.1016/0167-6377(83)90048-2
    16 https://doi.org/10.1016/j.enpol.2004.07.013
    17 https://doi.org/10.1016/j.ijforecast.2014.08.008
    18 https://doi.org/10.1016/s1571-0653(04)00002-2
    19 https://doi.org/10.1287/opre.35.5.772
    20 https://doi.org/10.1287/trsc.32.1.12
    21 schema:datePublished 2017-10
    22 schema:datePublishedReg 2017-10-01
    23 schema:description This paper studies a family of optimization problems where a set of items, each requiring a possibly different amount of resource, must be assigned to different slots for which the price of the resource can vary. The objective is then to assign items such that the overall resource cost is minimized. Such problems arise commonly in domains such as production scheduling in the presence of fluctuating renewable energy costs or variants of the Travelling Salesman Problem. In Constraint Programming, this can be naturally modeled in two ways: (a) with a sum of element constraints; (b) with a MinimumAssignment constraint. Unfortunately the sum of element constraints obtains a weak filtering and the MinimumAssignment constraint does not scale well on large instances. This work proposes a third approach by introducing the ResourceCostAllDifferent constraint and an associated incremental and scalable filtering algorithm, running in O(n⋅m), where n is the number of unbound variables and m is the maximum domain size of unbound variables. Its goal is to compute the total cost in a scalable manner by dealing with the fact that all assignments must be different. We first evaluate the efficiency of the new filtering on a real industrial problem and then on the Product Matrix Travelling Salesman Problem, a special case of the Asymmetric Travelling Salesman Problem. The study shows experimentally that our approach generally outperforms the decomposition and the MinimumAssignment ones for the problems we considered.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N8bad8b718ebb4be6a489cec89b4d1725
    28 Nb2d1d4727a344382afe337bb6d53f8e7
    29 sg:journal.1043977
    30 schema:name Efficient filtering for the Resource-Cost AllDifferent constraint
    31 schema:pagination 493-511
    32 schema:productId N101793f3264447d0b0cd6a8ed04703c8
    33 N31266c23315f4b6288644519948f3ede
    34 N557b3d9f77d14a1e813f2c87883e9450
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085563797
    36 https://doi.org/10.1007/s10601-017-9269-y
    37 schema:sdDatePublished 2019-04-11T12:41
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Neab94a5704f84fe48c386f9997942976
    40 schema:url https://link.springer.com/10.1007%2Fs10601-017-9269-y
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N101793f3264447d0b0cd6a8ed04703c8 schema:name doi
    45 schema:value 10.1007/s10601-017-9269-y
    46 rdf:type schema:PropertyValue
    47 N31266c23315f4b6288644519948f3ede schema:name dimensions_id
    48 schema:value pub.1085563797
    49 rdf:type schema:PropertyValue
    50 N557b3d9f77d14a1e813f2c87883e9450 schema:name readcube_id
    51 schema:value 872a16743e7719abbaf53ce14d2f16a5c1dae9f6523c0eb51b7afc4e34c16350
    52 rdf:type schema:PropertyValue
    53 N8bad8b718ebb4be6a489cec89b4d1725 schema:volumeNumber 22
    54 rdf:type schema:PublicationVolume
    55 Na94c32949b1443daa9c91643a64172fe rdf:first sg:person.016270221351.48
    56 rdf:rest rdf:nil
    57 Nb2d1d4727a344382afe337bb6d53f8e7 schema:issueNumber 4
    58 rdf:type schema:PublicationIssue
    59 Ne921322285c4447ea387c69827aee58e rdf:first sg:person.012557131067.38
    60 rdf:rest Na94c32949b1443daa9c91643a64172fe
    61 Neab94a5704f84fe48c386f9997942976 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Numerical and Computational Mathematics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1043977 schema:issn 1383-7133
    70 1572-9354
    71 schema:name Constraints
    72 rdf:type schema:Periodical
    73 sg:person.012557131067.38 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
    74 schema:familyName Van Cauwelaert
    75 schema:givenName Sascha
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557131067.38
    77 rdf:type schema:Person
    78 sg:person.016270221351.48 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
    79 schema:familyName Schaus
    80 schema:givenName Pierre
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016270221351.48
    82 rdf:type schema:Person
    83 sg:pub.10.1007/3-540-46135-3_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038682842
    84 https://doi.org/10.1007/3-540-46135-3_56
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/978-3-319-10428-7_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014437114
    87 https://doi.org/10.1007/978-3-319-10428-7_29
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-3-319-10428-7_59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048263417
    90 https://doi.org/10.1007/978-3-319-10428-7_59
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/978-3-319-18008-3_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043190236
    93 https://doi.org/10.1007/978-3-319-18008-3_29
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/978-3-319-23219-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789935
    96 https://doi.org/10.1007/978-3-319-23219-5_10
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/978-3-319-33954-2_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002342073
    99 https://doi.org/10.1007/978-3-319-33954-2_18
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/978-3-319-33954-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010011285
    102 https://doi.org/10.1007/978-3-319-33954-2_9
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-540-24664-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014323152
    105 https://doi.org/10.1007/978-3-540-24664-0_23
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-642-19486-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003962101
    108 https://doi.org/10.1007/978-3-642-19486-3_5
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s101070100263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040788378
    111 https://doi.org/10.1007/s101070100263
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1023/a:1020506526052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039833510
    114 https://doi.org/10.1023/a:1020506526052
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0167-6377(83)90048-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043780918
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.enpol.2004.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038771543
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.ijforecast.2014.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046783053
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s1571-0653(04)00002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039069593
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1287/opre.35.5.772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729863
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1287/trsc.32.1.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735452
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
    129 schema:name Université Catholique de Louvain, Place Sainte Barbe 2 bte L5.02.01, 1348, Louvain-la-Neuve, Belgium
    130 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...