Ontology type: schema:ScholarlyArticle Open Access: True
2017-04
AUTHORSHiep Nguyen, Christian Bessiere, Simon de Givry, Thomas Schiex
ABSTRACTCost Function Networks (aka Weighted CSP) allow to model a variety of problems, such as optimization of deterministic and stochastic graphical models including Markov random Fields and Bayesian Networks. Solving cost function networks is thus an important problem for deterministic and probabilistic reasoning. This paper focuses on local consistencies which define essential tools to simplify Cost Function Networks, and provide lower bounds on their optimal solution cost. To strengthen arc consistency bounds, we follow the idea of triangle-based domain consistencies for hard constraint networks (path inverse consistency, restricted or max-restricted path consistencies), describe their systematic extension to cost function networks, study their relative strengths, define enforcing algorithms, and experiment with them on a large set of benchmark problems. On some of these problems, our improved lower bounds seem necessary to solve them. More... »
PAGES230-264
http://scigraph.springernature.com/pub.10.1007/s10601-016-9250-1
DOIhttp://dx.doi.org/10.1007/s10601-016-9250-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019627120
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"MIAT, UR 875, Universit\u00e9 de Toulouse, INRA, Castanet-Tolosan, France"
],
"type": "Organization"
},
"familyName": "Nguyen",
"givenName": "Hiep",
"id": "sg:person.016341137430.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016341137430.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Montpellier",
"id": "https://www.grid.ac/institutes/grid.121334.6",
"name": [
"University of Montpellier, Montpellier, France"
],
"type": "Organization"
},
"familyName": "Bessiere",
"givenName": "Christian",
"id": "sg:person.013164552637.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013164552637.20"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"MIAT, UR 875, Universit\u00e9 de Toulouse, INRA, Castanet-Tolosan, France"
],
"type": "Organization"
},
"familyName": "Givry",
"givenName": "Simon de",
"id": "sg:person.016264131727.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264131727.46"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"MIAT, UR 875, Universit\u00e9 de Toulouse, INRA, Castanet-Tolosan, France"
],
"type": "Organization"
},
"familyName": "Schiex",
"givenName": "Thomas",
"id": "sg:person.01072303420.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072303420.99"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.artint.2004.05.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004337524"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1026488509554",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010942827",
"https://doi.org/10.1023/a:1026488509554"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10601-005-2240-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017431728",
"https://doi.org/10.1007/s10601-005-2240-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10601-005-2240-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017431728",
"https://doi.org/10.1007/s10601-005-2240-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0017448",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018041561",
"https://doi.org/10.1007/bfb0017448"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.artint.2003.09.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021273787"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btt374",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023371638"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009812409930",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025752985",
"https://doi.org/10.1023/a:1009812409930"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.artint.2010.02.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038096395"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45349-0_30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042748592",
"https://doi.org/10.1007/3-540-45349-0_30"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10601-007-9029-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044041135",
"https://doi.org/10.1007/s10601-007-9029-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10601-016-9245-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046823138",
"https://doi.org/10.1007/s10601-016-9245-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.artint.2007.05.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048085317"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0165-0114(02)00134-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051570822"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/acs.jctc.5b00594",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055098688"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/caia.1995.378792",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094455415"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1613/jair.3476",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105689803"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-04",
"datePublishedReg": "2017-04-01",
"description": "Cost Function Networks (aka Weighted CSP) allow to model a variety of problems, such as optimization of deterministic and stochastic graphical models including Markov random Fields and Bayesian Networks. Solving cost function networks is thus an important problem for deterministic and probabilistic reasoning. This paper focuses on local consistencies which define essential tools to simplify Cost Function Networks, and provide lower bounds on their optimal solution cost. To strengthen arc consistency bounds, we follow the idea of triangle-based domain consistencies for hard constraint networks (path inverse consistency, restricted or max-restricted path consistencies), describe their systematic extension to cost function networks, study their relative strengths, define enforcing algorithms, and experiment with them on a large set of benchmark problems. On some of these problems, our improved lower bounds seem necessary to solve them.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10601-016-9250-1",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1043977",
"issn": [
"1383-7133",
"1572-9354"
],
"name": "Constraints",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"name": "Triangle-based consistencies for cost function networks",
"pagination": "230-264",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5d83828587d91b1be0b3c162a36b8e1f0ad7aeb8809a9218df4d37842a684579"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10601-016-9250-1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019627120"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10601-016-9250-1",
"https://app.dimensions.ai/details/publication/pub.1019627120"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10601-016-9250-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9250-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9250-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9250-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9250-1'
This table displays all metadata directly associated to this object as RDF triples.
143 TRIPLES
21 PREDICATES
43 URIs
19 LITERALS
7 BLANK NODES