Combining restarts, nogoods and bag-connected decompositions for solving CSPs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04

AUTHORS

Philippe Jégou, Cyril Terrioux

ABSTRACT

From a theoretical viewpoint, the (tree-)decomposition methods offer a good approach for solving Constraint Satisfaction Problems (CSPs) when their (tree)-width is small. In this case, they have often shown their practical interest. So, the literature (coming from Mathematics, OR or AI) has concentrated its efforts on the minimization of a single parameter, namely the tree-width. Nevertheless, experimental studies have shown that this parameter is not always the most relevant to consider when solving CSPs. So, in this paper, we highlight two fundamental problems related to the use of tree-decomposition and for which we offer two particularly appropriate solutions. First, we experimentally show that the decomposition algorithms of the state of the art produce clusters (a tree-decomposition is a rooted tree of clusters) having several connected components. We highlight the fact that such clusters create a real disadvantage which affects significantly the efficiency of solving methods. To avoid this problem, we consider here a new graph decomposition called Bag-Connected Tree-Decomposition, which considers only tree-decompositions such that each cluster is connected. We analyze such decompositions from an algorithmic point of view, especially in order to propose a first polynomial time algorithm to compute them. Moreover, even if we consider a very well suited decomposition, it is well known that sometimes, a bad choice for the root cluster may significantly degrade the performance of the solving. We highlight an explanation of this degradation and we propose a solution based on restart techniques. Then, we present a new version of the BTD algorithm (for Backtracking with Tree-Decomposition Jégou and Terrioux, Artificial Intelligence, 146 43–75 28) integrating restart techniques. From a theoretical viewpoint, we prove that reduced nld-nogoods can be safely recorded during the search and that their size is smaller than ones recorded by MAC+RST+NG (Lecoutre et al., JSAT, 1(3–4) 147–167 34). We also show how structural (no)goods may be exploited when the search restarts from a new root cluster. Finally, from a practical viewpoint, we show experimentally the benefits of using independently bag-connected tree-decompositions and restart techniques for solving CSPs by decomposition methods. Above all, we experimentally highlight the advantages brought by exploiting jointly these improvements in order to respond to two major problems generally encountered when solving CSPs by decomposition methods. More... »

PAGES

191-229

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10601-016-9248-8

DOI

http://dx.doi.org/10.1007/s10601-016-9248-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052364827


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Aix Marseille Universit\u00e9, CNRS, ENSAM, Universit\u00e9 de Toulon, LSIS UMR 7296, 13397, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00e9gou", 
        "givenName": "Philippe", 
        "id": "sg:person.01255044273.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255044273.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Aix Marseille Universit\u00e9, CNRS, ENSAM, Universit\u00e9 de Toulon, LSIS UMR 7296, 13397, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terrioux", 
        "givenName": "Cyril", 
        "id": "sg:person.014232365062.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014232365062.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1006314320276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002798914", 
          "https://doi.org/10.1023/a:1006314320276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(02)00400-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007778118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007813043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007813043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0017438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011986368", 
          "https://doi.org/10.1007/bfb0017438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artint.2006.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017268502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(02)00263-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018433002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74970-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019754852", 
          "https://doi.org/10.1007/978-3-540-74970-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74970-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019754852", 
          "https://doi.org/10.1007/978-3-540-74970-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-6774(86)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021500239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11889205_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021793428", 
          "https://doi.org/10.1007/11889205_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11889205_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021793428", 
          "https://doi.org/10.1007/11889205_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04244-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022471118", 
          "https://doi.org/10.1007/978-3-642-04244-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11682462_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022989737", 
          "https://doi.org/10.1007/11682462_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11682462_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022989737", 
          "https://doi.org/10.1007/11682462_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8788-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023111840", 
          "https://doi.org/10.1007/978-1-4613-8788-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009812409930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025752985", 
          "https://doi.org/10.1023/a:1009812409930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-58601-6_86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026133979", 
          "https://doi.org/10.1007/3-540-58601-6_86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88636-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026800515", 
          "https://doi.org/10.1007/978-3-540-88636-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88636-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026800515", 
          "https://doi.org/10.1007/978-3-540-88636-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(89)90037-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029979336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(89)90037-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029979336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(00)00050-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033207634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30201-8_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036218440", 
          "https://doi.org/10.1007/978-3-540-30201-8_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30201-8_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036218440", 
          "https://doi.org/10.1007/978-3-540-30201-8_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10428-7_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040334194", 
          "https://doi.org/10.1007/978-3-319-10428-7_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322290.322292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042825214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11564751_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047324692", 
          "https://doi.org/10.1007/11564751_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11564751_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047324692", 
          "https://doi.org/10.1007/11564751_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(93)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048397563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(00)00078-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051952374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0201013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0213035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0608024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062850112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/15m1044618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00493-016-3516-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083800256", 
          "https://doi.org/10.1007/s00493-016-3516-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00493-016-3516-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083800256", 
          "https://doi.org/10.1007/s00493-016-3516-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "From a theoretical viewpoint, the (tree-)decomposition methods offer a good approach for solving Constraint Satisfaction Problems (CSPs) when their (tree)-width is small. In this case, they have often shown their practical interest. So, the literature (coming from Mathematics, OR or AI) has concentrated its efforts on the minimization of a single parameter, namely the tree-width. Nevertheless, experimental studies have shown that this parameter is not always the most relevant to consider when solving CSPs. So, in this paper, we highlight two fundamental problems related to the use of tree-decomposition and for which we offer two particularly appropriate solutions. First, we experimentally show that the decomposition algorithms of the state of the art produce clusters (a tree-decomposition is a rooted tree of clusters) having several connected components. We highlight the fact that such clusters create a real disadvantage which affects significantly the efficiency of solving methods. To avoid this problem, we consider here a new graph decomposition called Bag-Connected Tree-Decomposition, which considers only tree-decompositions such that each cluster is connected. We analyze such decompositions from an algorithmic point of view, especially in order to propose a first polynomial time algorithm to compute them. Moreover, even if we consider a very well suited decomposition, it is well known that sometimes, a bad choice for the root cluster may significantly degrade the performance of the solving. We highlight an explanation of this degradation and we propose a solution based on restart techniques. Then, we present a new version of the BTD algorithm (for Backtracking with Tree-Decomposition J\u00e9gou and Terrioux, Artificial Intelligence, 146 43\u201375 28) integrating restart techniques. From a theoretical viewpoint, we prove that reduced nld-nogoods can be safely recorded during the search and that their size is smaller than ones recorded by MAC+RST+NG (Lecoutre et al., JSAT, 1(3\u20134) 147\u2013167 34). We also show how structural (no)goods may be exploited when the search restarts from a new root cluster. Finally, from a practical viewpoint, we show experimentally the benefits of using independently bag-connected tree-decompositions and restart techniques for solving CSPs by decomposition methods. Above all, we experimentally highlight the advantages brought by exploiting jointly these improvements in order to respond to two major problems generally encountered when solving CSPs by decomposition methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10601-016-9248-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043977", 
        "issn": [
          "1383-7133", 
          "1572-9354"
        ], 
        "name": "Constraints", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Combining restarts, nogoods and bag-connected decompositions for solving CSPs", 
    "pagination": "191-229", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f96e6773c1cd09c7b4be3a972866d89f6ef574a71532999de38d549c282fe819"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10601-016-9248-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052364827"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10601-016-9248-8", 
      "https://app.dimensions.ai/details/publication/pub.1052364827"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70066_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10601-016-9248-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9248-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9248-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9248-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10601-016-9248-8'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10601-016-9248-8 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Na0417ed9bb33450089e410ff179bb524
4 schema:citation sg:pub.10.1007/11564751_63
5 sg:pub.10.1007/11682462_45
6 sg:pub.10.1007/11889205_62
7 sg:pub.10.1007/3-540-58601-6_86
8 sg:pub.10.1007/978-1-4613-8788-6_9
9 sg:pub.10.1007/978-3-319-10428-7_31
10 sg:pub.10.1007/978-3-540-30201-8_56
11 sg:pub.10.1007/978-3-540-74970-7_27
12 sg:pub.10.1007/978-3-540-88636-5_1
13 sg:pub.10.1007/978-3-642-04244-7_27
14 sg:pub.10.1007/bfb0017438
15 sg:pub.10.1007/s00493-016-3516-5
16 sg:pub.10.1023/a:1006314320276
17 sg:pub.10.1023/a:1009812409930
18 https://doi.org/10.1016/0004-3702(89)90037-4
19 https://doi.org/10.1016/0004-3702(94)90003-5
20 https://doi.org/10.1016/0020-0190(93)90029-9
21 https://doi.org/10.1016/0196-6774(86)90023-4
22 https://doi.org/10.1016/j.artint.2006.11.003
23 https://doi.org/10.1016/s0004-3702(00)00050-3
24 https://doi.org/10.1016/s0004-3702(00)00078-3
25 https://doi.org/10.1016/s0004-3702(02)00263-1
26 https://doi.org/10.1016/s0004-3702(02)00400-9
27 https://doi.org/10.1137/0201013
28 https://doi.org/10.1137/0213035
29 https://doi.org/10.1137/0608024
30 https://doi.org/10.1137/15m1044618
31 https://doi.org/10.1145/322290.322292
32 schema:datePublished 2017-04
33 schema:datePublishedReg 2017-04-01
34 schema:description From a theoretical viewpoint, the (tree-)decomposition methods offer a good approach for solving Constraint Satisfaction Problems (CSPs) when their (tree)-width is small. In this case, they have often shown their practical interest. So, the literature (coming from Mathematics, OR or AI) has concentrated its efforts on the minimization of a single parameter, namely the tree-width. Nevertheless, experimental studies have shown that this parameter is not always the most relevant to consider when solving CSPs. So, in this paper, we highlight two fundamental problems related to the use of tree-decomposition and for which we offer two particularly appropriate solutions. First, we experimentally show that the decomposition algorithms of the state of the art produce clusters (a tree-decomposition is a rooted tree of clusters) having several connected components. We highlight the fact that such clusters create a real disadvantage which affects significantly the efficiency of solving methods. To avoid this problem, we consider here a new graph decomposition called Bag-Connected Tree-Decomposition, which considers only tree-decompositions such that each cluster is connected. We analyze such decompositions from an algorithmic point of view, especially in order to propose a first polynomial time algorithm to compute them. Moreover, even if we consider a very well suited decomposition, it is well known that sometimes, a bad choice for the root cluster may significantly degrade the performance of the solving. We highlight an explanation of this degradation and we propose a solution based on restart techniques. Then, we present a new version of the BTD algorithm (for Backtracking with Tree-Decomposition Jégou and Terrioux, Artificial Intelligence, 146 43–75 28) integrating restart techniques. From a theoretical viewpoint, we prove that reduced nld-nogoods can be safely recorded during the search and that their size is smaller than ones recorded by MAC+RST+NG (Lecoutre et al., JSAT, 1(3–4) 147–167 34). We also show how structural (no)goods may be exploited when the search restarts from a new root cluster. Finally, from a practical viewpoint, we show experimentally the benefits of using independently bag-connected tree-decompositions and restart techniques for solving CSPs by decomposition methods. Above all, we experimentally highlight the advantages brought by exploiting jointly these improvements in order to respond to two major problems generally encountered when solving CSPs by decomposition methods.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N42ecc7d4b0424265b72465db3303ae32
39 Nfbe40d1ae629482c8eea0c786f660537
40 sg:journal.1043977
41 schema:name Combining restarts, nogoods and bag-connected decompositions for solving CSPs
42 schema:pagination 191-229
43 schema:productId Nc665662420b44f218dbf86b969b762f7
44 Ndaea60f656aa4d54a0d07f623ecb22e9
45 Ne485149dc10644bd9840e34232cc804e
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052364827
47 https://doi.org/10.1007/s10601-016-9248-8
48 schema:sdDatePublished 2019-04-11T12:44
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N9a2c4d5b29f744518763d80ba71cdd94
51 schema:url https://link.springer.com/10.1007%2Fs10601-016-9248-8
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N39b1a6fc4d424f2db08a7e3ce0c36f2f rdf:first sg:person.014232365062.45
56 rdf:rest rdf:nil
57 N42ecc7d4b0424265b72465db3303ae32 schema:volumeNumber 22
58 rdf:type schema:PublicationVolume
59 N9a2c4d5b29f744518763d80ba71cdd94 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Na0417ed9bb33450089e410ff179bb524 rdf:first sg:person.01255044273.53
62 rdf:rest N39b1a6fc4d424f2db08a7e3ce0c36f2f
63 Nc665662420b44f218dbf86b969b762f7 schema:name doi
64 schema:value 10.1007/s10601-016-9248-8
65 rdf:type schema:PropertyValue
66 Ndaea60f656aa4d54a0d07f623ecb22e9 schema:name dimensions_id
67 schema:value pub.1052364827
68 rdf:type schema:PropertyValue
69 Ne485149dc10644bd9840e34232cc804e schema:name readcube_id
70 schema:value f96e6773c1cd09c7b4be3a972866d89f6ef574a71532999de38d549c282fe819
71 rdf:type schema:PropertyValue
72 Nfbe40d1ae629482c8eea0c786f660537 schema:issueNumber 2
73 rdf:type schema:PublicationIssue
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
78 schema:name Computation Theory and Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1043977 schema:issn 1383-7133
81 1572-9354
82 schema:name Constraints
83 rdf:type schema:Periodical
84 sg:person.01255044273.53 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
85 schema:familyName Jégou
86 schema:givenName Philippe
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255044273.53
88 rdf:type schema:Person
89 sg:person.014232365062.45 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
90 schema:familyName Terrioux
91 schema:givenName Cyril
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014232365062.45
93 rdf:type schema:Person
94 sg:pub.10.1007/11564751_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047324692
95 https://doi.org/10.1007/11564751_63
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/11682462_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022989737
98 https://doi.org/10.1007/11682462_45
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/11889205_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021793428
101 https://doi.org/10.1007/11889205_62
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/3-540-58601-6_86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026133979
104 https://doi.org/10.1007/3-540-58601-6_86
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-1-4613-8788-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023111840
107 https://doi.org/10.1007/978-1-4613-8788-6_9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-319-10428-7_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040334194
110 https://doi.org/10.1007/978-3-319-10428-7_31
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-540-30201-8_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036218440
113 https://doi.org/10.1007/978-3-540-30201-8_56
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-540-74970-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019754852
116 https://doi.org/10.1007/978-3-540-74970-7_27
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-540-88636-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026800515
119 https://doi.org/10.1007/978-3-540-88636-5_1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-642-04244-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022471118
122 https://doi.org/10.1007/978-3-642-04244-7_27
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bfb0017438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011986368
125 https://doi.org/10.1007/bfb0017438
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00493-016-3516-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083800256
128 https://doi.org/10.1007/s00493-016-3516-5
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1006314320276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002798914
131 https://doi.org/10.1023/a:1006314320276
132 rdf:type schema:CreativeWork
133 sg:pub.10.1023/a:1009812409930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025752985
134 https://doi.org/10.1023/a:1009812409930
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0004-3702(89)90037-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029979336
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0004-3702(94)90003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007813043
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0020-0190(93)90029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048397563
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0196-6774(86)90023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021500239
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.artint.2006.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017268502
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0004-3702(00)00050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033207634
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0004-3702(00)00078-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051952374
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0004-3702(02)00263-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018433002
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0004-3702(02)00400-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007778118
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1137/0201013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841176
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1137/0213035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841769
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1137/0608024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062850112
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/15m1044618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874210
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/322290.322292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042825214
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
165 schema:name Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296, 13397, Marseille, France
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...