Using finite transducers for describing and synthesising structural time-series constraints View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

Nicolas Beldiceanu, Mats Carlsson, Rémi Douence, Helmut Simonis

ABSTRACT

We describe a large family of constraints for structural time series by means of function composition. These constraints are on aggregations of features of patterns that occur in a time series, such as the number of its peaks, or the range of its steepest ascent. The patterns and features are usually linked to physical properties of the time series generator, which are important to capture in a constraint model of the system, i.e. a conjunction of constraints that produces similar time series. We formalise the patterns using finite transducers, whose output alphabet corresponds to semantic values that precisely describe the steps for identifying the occurrences of a pattern. Based on that description, we automatically synthesise automata with accumulators, as well as constraint checkers. The description scheme not only unifies the structure of the existing 30 time-series constraints in the Global Constraint Catalogue, but also leads to over 600 new constraints, with more than 100,000 lines of synthesised code. More... »

PAGES

22-40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10601-015-9200-3

DOI

http://dx.doi.org/10.1007/s10601-015-9200-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003592381


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "TASC (CNRS/INRIA), Mines Nantes, 44307, Nantes, FR, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beldiceanu", 
        "givenName": "Nicolas", 
        "id": "sg:person.015270222061.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270222061.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swedish Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.6383.e", 
          "name": [
            "SICS, P.O. Box 1263, 164 29, Kista, SE, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carlsson", 
        "givenName": "Mats", 
        "id": "sg:person.010541646777.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541646777.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ASCOLA (CNRS/INRIA), Mines Nantes, 44307, Nantes, FR, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Douence", 
        "givenName": "R\u00e9mi", 
        "id": "sg:person.014204443221.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204443221.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College Cork", 
          "id": "https://www.grid.ac/institutes/grid.7872.a", 
          "name": [
            "Insight Centre for Data Analytics, University College Cork, Cork, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simonis", 
        "givenName": "Helmut", 
        "id": "sg:person.014003267235.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003267235.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-663-09367-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003958860", 
          "https://doi.org/10.1007/978-3-663-09367-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-663-09367-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003958860", 
          "https://doi.org/10.1007/978-3-663-09367-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-006-9010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004487181", 
          "https://doi.org/10.1007/s10601-006-9010-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-006-9010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004487181", 
          "https://doi.org/10.1007/s10601-006-9010-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008585963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008585963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23786-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012691146", 
          "https://doi.org/10.1007/978-3-642-23786-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artint.2011.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013588077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1351324997001599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016632888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10428-7_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020184046", 
          "https://doi.org/10.1007/978-3-319-10428-7_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33558-7_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020318953", 
          "https://doi.org/10.1007/978-3-642-33558-7_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40627-0_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021525659", 
          "https://doi.org/10.1007/978-3-642-40627-0_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artint.2014.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022758249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023432348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-60299-2_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027334453", 
          "https://doi.org/10.1007/3-540-60299-2_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-09823-4_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027858469", 
          "https://doi.org/10.1007/978-0-387-09823-4_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-09823-4_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027858469", 
          "https://doi.org/10.1007/978-0-387-09823-4_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-013-9152-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030164442", 
          "https://doi.org/10.1007/s10601-013-9152-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-005-2809-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036068843", 
          "https://doi.org/10.1007/s10601-005-2809-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-005-2809-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036068843", 
          "https://doi.org/10.1007/s10601-005-2809-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2103621.2103674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037230529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10601-012-9132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046152268", 
          "https://doi.org/10.1007/s10601-012-9132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2000.839385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095339672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107049994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098678871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2103656.2103674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098861013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "We describe a large family of constraints for structural time series by means of function composition. These constraints are on aggregations of features of patterns that occur in a time series, such as the number of its peaks, or the range of its steepest ascent. The patterns and features are usually linked to physical properties of the time series generator, which are important to capture in a constraint model of the system, i.e. a conjunction of constraints that produces similar time series. We formalise the patterns using finite transducers, whose output alphabet corresponds to semantic values that precisely describe the steps for identifying the occurrences of a pattern. Based on that description, we automatically synthesise automata with accumulators, as well as constraint checkers. The description scheme not only unifies the structure of the existing 30 time-series constraints in the Global Constraint Catalogue, but also leads to over 600 new constraints, with more than 100,000 lines of synthesised code.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10601-015-9200-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3938740", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3785947", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043977", 
        "issn": [
          "1383-7133", 
          "1572-9354"
        ], 
        "name": "Constraints", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Using finite transducers for describing and synthesising structural time-series constraints", 
    "pagination": "22-40", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "111ce440aa80e6549b21c55a531797542f84173e3346479af9cde7b15ec910fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10601-015-9200-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003592381"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10601-015-9200-3", 
      "https://app.dimensions.ai/details/publication/pub.1003592381"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10601-015-9200-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10601-015-9200-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10601-015-9200-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10601-015-9200-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10601-015-9200-3'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10601-015-9200-3 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N44c1a6e997f848fb856c997676992587
4 schema:citation sg:pub.10.1007/3-540-60299-2_9
5 sg:pub.10.1007/978-0-387-09823-4_56
6 sg:pub.10.1007/978-3-319-10428-7_13
7 sg:pub.10.1007/978-3-642-23786-7_4
8 sg:pub.10.1007/978-3-642-33558-7_13
9 sg:pub.10.1007/978-3-642-40627-0_54
10 sg:pub.10.1007/978-3-663-09367-1
11 sg:pub.10.1007/s10601-005-2809-x
12 sg:pub.10.1007/s10601-006-9010-8
13 sg:pub.10.1007/s10601-012-9132-0
14 sg:pub.10.1007/s10601-013-9152-4
15 https://doi.org/10.1016/j.artint.2011.05.002
16 https://doi.org/10.1016/j.artint.2014.03.001
17 https://doi.org/10.1016/j.engappai.2010.09.007
18 https://doi.org/10.1016/j.patcog.2005.01.025
19 https://doi.org/10.1017/cbo9781107049994
20 https://doi.org/10.1017/s1351324997001599
21 https://doi.org/10.1109/icde.2000.839385
22 https://doi.org/10.1145/2103621.2103674
23 https://doi.org/10.1145/2103656.2103674
24 schema:datePublished 2016-01
25 schema:datePublishedReg 2016-01-01
26 schema:description We describe a large family of constraints for structural time series by means of function composition. These constraints are on aggregations of features of patterns that occur in a time series, such as the number of its peaks, or the range of its steepest ascent. The patterns and features are usually linked to physical properties of the time series generator, which are important to capture in a constraint model of the system, i.e. a conjunction of constraints that produces similar time series. We formalise the patterns using finite transducers, whose output alphabet corresponds to semantic values that precisely describe the steps for identifying the occurrences of a pattern. Based on that description, we automatically synthesise automata with accumulators, as well as constraint checkers. The description scheme not only unifies the structure of the existing 30 time-series constraints in the Global Constraint Catalogue, but also leads to over 600 new constraints, with more than 100,000 lines of synthesised code.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Ncabebf20eb194991a78e7a48881bd338
31 Ncaf0ebfabd754ab19f674f3ea4c95bfe
32 sg:journal.1043977
33 schema:name Using finite transducers for describing and synthesising structural time-series constraints
34 schema:pagination 22-40
35 schema:productId N1efb76c4aa88462b86517737284ef823
36 N945d7e9fa095471ab923ebb796ff5800
37 Nef0e13f743374534807dd6d71469131b
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003592381
39 https://doi.org/10.1007/s10601-015-9200-3
40 schema:sdDatePublished 2019-04-10T18:14
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nd5a204a010b24873861b19cc1d2b4077
43 schema:url http://link.springer.com/10.1007/s10601-015-9200-3
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0b8157a6474744c5b20e883aa2d7b699 rdf:first sg:person.014204443221.79
48 rdf:rest Ndd559ae9cfb44f30b5288b52cf06733c
49 N1efb76c4aa88462b86517737284ef823 schema:name doi
50 schema:value 10.1007/s10601-015-9200-3
51 rdf:type schema:PropertyValue
52 N29517720e6504f1094106d78f8cf6178 rdf:first sg:person.010541646777.44
53 rdf:rest N0b8157a6474744c5b20e883aa2d7b699
54 N44c1a6e997f848fb856c997676992587 rdf:first sg:person.015270222061.08
55 rdf:rest N29517720e6504f1094106d78f8cf6178
56 N47d4a414112143fdaea5ae5d849bded8 schema:name TASC (CNRS/INRIA), Mines Nantes, 44307, Nantes, FR, France
57 rdf:type schema:Organization
58 N945d7e9fa095471ab923ebb796ff5800 schema:name readcube_id
59 schema:value 111ce440aa80e6549b21c55a531797542f84173e3346479af9cde7b15ec910fc
60 rdf:type schema:PropertyValue
61 Ncabebf20eb194991a78e7a48881bd338 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 Ncaf0ebfabd754ab19f674f3ea4c95bfe schema:volumeNumber 21
64 rdf:type schema:PublicationVolume
65 Nd5a204a010b24873861b19cc1d2b4077 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nd9302be13a3f4ae085b6231312988f5f schema:name ASCOLA (CNRS/INRIA), Mines Nantes, 44307, Nantes, FR, France
68 rdf:type schema:Organization
69 Ndd559ae9cfb44f30b5288b52cf06733c rdf:first sg:person.014003267235.39
70 rdf:rest rdf:nil
71 Nef0e13f743374534807dd6d71469131b schema:name dimensions_id
72 schema:value pub.1003592381
73 rdf:type schema:PropertyValue
74 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
75 schema:name Economics
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
78 schema:name Econometrics
79 rdf:type schema:DefinedTerm
80 sg:grant.3785947 http://pending.schema.org/fundedItem sg:pub.10.1007/s10601-015-9200-3
81 rdf:type schema:MonetaryGrant
82 sg:grant.3938740 http://pending.schema.org/fundedItem sg:pub.10.1007/s10601-015-9200-3
83 rdf:type schema:MonetaryGrant
84 sg:journal.1043977 schema:issn 1383-7133
85 1572-9354
86 schema:name Constraints
87 rdf:type schema:Periodical
88 sg:person.010541646777.44 schema:affiliation https://www.grid.ac/institutes/grid.6383.e
89 schema:familyName Carlsson
90 schema:givenName Mats
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541646777.44
92 rdf:type schema:Person
93 sg:person.014003267235.39 schema:affiliation https://www.grid.ac/institutes/grid.7872.a
94 schema:familyName Simonis
95 schema:givenName Helmut
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003267235.39
97 rdf:type schema:Person
98 sg:person.014204443221.79 schema:affiliation Nd9302be13a3f4ae085b6231312988f5f
99 schema:familyName Douence
100 schema:givenName Rémi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204443221.79
102 rdf:type schema:Person
103 sg:person.015270222061.08 schema:affiliation N47d4a414112143fdaea5ae5d849bded8
104 schema:familyName Beldiceanu
105 schema:givenName Nicolas
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270222061.08
107 rdf:type schema:Person
108 sg:pub.10.1007/3-540-60299-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027334453
109 https://doi.org/10.1007/3-540-60299-2_9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-0-387-09823-4_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027858469
112 https://doi.org/10.1007/978-0-387-09823-4_56
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-319-10428-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020184046
115 https://doi.org/10.1007/978-3-319-10428-7_13
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-642-23786-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012691146
118 https://doi.org/10.1007/978-3-642-23786-7_4
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-642-33558-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020318953
121 https://doi.org/10.1007/978-3-642-33558-7_13
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-642-40627-0_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021525659
124 https://doi.org/10.1007/978-3-642-40627-0_54
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-663-09367-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003958860
127 https://doi.org/10.1007/978-3-663-09367-1
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10601-005-2809-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036068843
130 https://doi.org/10.1007/s10601-005-2809-x
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10601-006-9010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004487181
133 https://doi.org/10.1007/s10601-006-9010-8
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10601-012-9132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046152268
136 https://doi.org/10.1007/s10601-012-9132-0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10601-013-9152-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030164442
139 https://doi.org/10.1007/s10601-013-9152-4
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.artint.2011.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013588077
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.artint.2014.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022758249
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.engappai.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023432348
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.patcog.2005.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008585963
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/cbo9781107049994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098678871
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/s1351324997001599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016632888
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/icde.2000.839385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095339672
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/2103621.2103674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037230529
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/2103656.2103674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098861013
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.6383.e schema:alternateName Swedish Institute of Computer Science
160 schema:name SICS, P.O. Box 1263, 164 29, Kista, SE, Sweden
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.7872.a schema:alternateName University College Cork
163 schema:name Insight Centre for Data Analytics, University College Cork, Cork, Ireland
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...