Some categories associated with bases of the kalman algebra View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

N. I. Osetinskii, O. O. Vasil’ev

ABSTRACT

We investigate relationships in the Kalman algebra, viewed as an algebra over the algebra induced by the coefficients of the characteristic polynomial of the state matrix. To this end we introduce the categories and associated with relationships in some basis of the Kalman algebra and also with reconstruction of relationships from known fragments. On these categories we construct the structures of the symmetrical monoidal category induced by addition and multiplication in the Kalman algebra. We investigate the properties of some of the most important classes of morphisms, in particular, we describe the structure and the action of the automorphism group. More... »

PAGES

409-422

References to SciGraph publications

  • 1983. Algebraic Simplification in COMPUTER ALGEBRA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10598-011-9110-1

    DOI

    http://dx.doi.org/10.1007/s10598-011-9110-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004800964


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Osetinskii", 
            "givenName": "N. I.", 
            "id": "sg:person.014005733555.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Vasil\u2019ev", 
            "givenName": "O. O.", 
            "id": "sg:person.014155045257.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0001-8708(76)90027-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019497001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-7551-4_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043835643", 
              "https://doi.org/10.1007/978-3-7091-7551-4_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0747-7171(87)80020-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047426319"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-10", 
        "datePublishedReg": "2011-10-01", 
        "description": "We investigate relationships in the Kalman algebra, viewed as an algebra over the algebra induced by the coefficients of the characteristic polynomial of the state matrix. To this end we introduce the categories and associated with relationships in some basis of the Kalman algebra and also with reconstruction of relationships from known fragments. On these categories we construct the structures of the symmetrical monoidal category induced by addition and multiplication in the Kalman algebra. We investigate the properties of some of the most important classes of morphisms, in particular, we describe the structure and the action of the automorphism group.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10598-011-9110-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136103", 
            "issn": [
              "1046-283X", 
              "1573-837X"
            ], 
            "name": "Computational Mathematics and Modeling", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Some categories associated with bases of the kalman algebra", 
        "pagination": "409-422", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "16e04b46e4a4e8d8fff9ed62ea1b37ab507ec3a58799d37e38d275c458a2ee8d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10598-011-9110-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004800964"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10598-011-9110-1", 
          "https://app.dimensions.ai/details/publication/pub.1004800964"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10598-011-9110-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9110-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9110-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9110-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9110-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    73 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10598-011-9110-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nee1935a4373340edb69cc5cdb42a9fbe
    4 schema:citation sg:pub.10.1007/978-3-7091-7551-4_2
    5 https://doi.org/10.1016/0001-8708(76)90027-x
    6 https://doi.org/10.1016/s0747-7171(87)80020-2
    7 schema:datePublished 2011-10
    8 schema:datePublishedReg 2011-10-01
    9 schema:description We investigate relationships in the Kalman algebra, viewed as an algebra over the algebra induced by the coefficients of the characteristic polynomial of the state matrix. To this end we introduce the categories and associated with relationships in some basis of the Kalman algebra and also with reconstruction of relationships from known fragments. On these categories we construct the structures of the symmetrical monoidal category induced by addition and multiplication in the Kalman algebra. We investigate the properties of some of the most important classes of morphisms, in particular, we describe the structure and the action of the automorphism group.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N4de84f1b71374c6986161a383c63924f
    14 N74ca0b49f4cb41e8a4dfdcc5737a3134
    15 sg:journal.1136103
    16 schema:name Some categories associated with bases of the kalman algebra
    17 schema:pagination 409-422
    18 schema:productId N1a37d234e6764eb79538e61f1e4e521f
    19 N46fd3fbb9ebf473e99b46ccc14077fed
    20 Nb21b53957ea54b4bb65ca9d0990f1111
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004800964
    22 https://doi.org/10.1007/s10598-011-9110-1
    23 schema:sdDatePublished 2019-04-11T01:53
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N11a4037a06ae4caeb69a889c16828d9d
    26 schema:url http://link.springer.com/10.1007/s10598-011-9110-1
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N11a4037a06ae4caeb69a889c16828d9d schema:name Springer Nature - SN SciGraph project
    31 rdf:type schema:Organization
    32 N1a37d234e6764eb79538e61f1e4e521f schema:name doi
    33 schema:value 10.1007/s10598-011-9110-1
    34 rdf:type schema:PropertyValue
    35 N46fd3fbb9ebf473e99b46ccc14077fed schema:name readcube_id
    36 schema:value 16e04b46e4a4e8d8fff9ed62ea1b37ab507ec3a58799d37e38d275c458a2ee8d
    37 rdf:type schema:PropertyValue
    38 N4de84f1b71374c6986161a383c63924f schema:volumeNumber 22
    39 rdf:type schema:PublicationVolume
    40 N68238b4dd3c14973a1340ff74b909332 rdf:first sg:person.014155045257.38
    41 rdf:rest rdf:nil
    42 N74ca0b49f4cb41e8a4dfdcc5737a3134 schema:issueNumber 4
    43 rdf:type schema:PublicationIssue
    44 Nb21b53957ea54b4bb65ca9d0990f1111 schema:name dimensions_id
    45 schema:value pub.1004800964
    46 rdf:type schema:PropertyValue
    47 Nee1935a4373340edb69cc5cdb42a9fbe rdf:first sg:person.014005733555.00
    48 rdf:rest N68238b4dd3c14973a1340ff74b909332
    49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Mathematical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Pure Mathematics
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136103 schema:issn 1046-283X
    56 1573-837X
    57 schema:name Computational Mathematics and Modeling
    58 rdf:type schema:Periodical
    59 sg:person.014005733555.00 schema:familyName Osetinskii
    60 schema:givenName N. I.
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00
    62 rdf:type schema:Person
    63 sg:person.014155045257.38 schema:familyName Vasil’ev
    64 schema:givenName O. O.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38
    66 rdf:type schema:Person
    67 sg:pub.10.1007/978-3-7091-7551-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043835643
    68 https://doi.org/10.1007/978-3-7091-7551-4_2
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1016/0001-8708(76)90027-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019497001
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1016/s0747-7171(87)80020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047426319
    73 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...