Minimum-order observers for discrete-time systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-04

AUTHORS

S. V. Emel’yanov, S. K. Korovin

ABSTRACT

We consider the synthesis of a minimum-order state or functional observer for a linear dynamical system. The synthesis problem is solved for completely certain systems of general form and for some classes of uncertain systems. Various approaches are described, which ultimately lead to the same task: finding a minimum-dimension Hurwitz solution for a system of linear equations with a Hankel matrix. For scalar and vector linear systems, prior upper and lower bounds on the observer dimension are derived, which makes it possible to switch to an iterative procedure of finding an optimal solution. The discussion is set out for discrete-time dynamical systems. More... »

PAGES

111-144

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10598-011-9093-y

DOI

http://dx.doi.org/10.1007/s10598-011-9093-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020708354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Emel\u2019yanov", 
        "givenName": "S. V.", 
        "id": "sg:person.012146212572.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146212572.40"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Korovin", 
        "givenName": "S. K.", 
        "id": "sg:person.010310624321.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010310624321.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/002077200291415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008023767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266106100028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009455077", 
          "https://doi.org/10.1134/s0012266106100028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207177308932507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024547940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0310-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552040", 
          "https://doi.org/10.1007/s10625-005-0310-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0310-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552040", 
          "https://doi.org/10.1007/s10625-005-0310-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-1098(98)00013-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037281297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.280770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061243848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.293209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061243987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1967.1098584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061469421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1978.1101758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061472332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1980.1102245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061472781"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04", 
    "datePublishedReg": "2011-04-01", 
    "description": "We consider the synthesis of a minimum-order state or functional observer for a linear dynamical system. The synthesis problem is solved for completely certain systems of general form and for some classes of uncertain systems. Various approaches are described, which ultimately lead to the same task: finding a minimum-dimension Hurwitz solution for a system of linear equations with a Hankel matrix. For scalar and vector linear systems, prior upper and lower bounds on the observer dimension are derived, which makes it possible to switch to an iterative procedure of finding an optimal solution. The discussion is set out for discrete-time dynamical systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10598-011-9093-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136103", 
        "issn": [
          "1046-283X", 
          "1573-837X"
        ], 
        "name": "Computational Mathematics and Modeling", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Minimum-order observers for discrete-time systems", 
    "pagination": "111-144", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62ab9b0d53d48d1ae1b4dc5e2bb1b6642046d52a583801832ac290c987e86f58"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10598-011-9093-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020708354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10598-011-9093-y", 
      "https://app.dimensions.ai/details/publication/pub.1020708354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10598-011-9093-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9093-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9093-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9093-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10598-011-9093-y'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10598-011-9093-y schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N61f2ffaad3f143889629b01fe511c49b
4 schema:citation sg:pub.10.1007/s10625-005-0310-3
5 sg:pub.10.1134/s0012266106100028
6 https://doi.org/10.1016/s0005-1098(98)00013-2
7 https://doi.org/10.1080/00207177308932507
8 https://doi.org/10.1080/002077200291415
9 https://doi.org/10.1109/9.280770
10 https://doi.org/10.1109/9.293209
11 https://doi.org/10.1109/tac.1967.1098584
12 https://doi.org/10.1109/tac.1978.1101758
13 https://doi.org/10.1109/tac.1980.1102245
14 schema:datePublished 2011-04
15 schema:datePublishedReg 2011-04-01
16 schema:description We consider the synthesis of a minimum-order state or functional observer for a linear dynamical system. The synthesis problem is solved for completely certain systems of general form and for some classes of uncertain systems. Various approaches are described, which ultimately lead to the same task: finding a minimum-dimension Hurwitz solution for a system of linear equations with a Hankel matrix. For scalar and vector linear systems, prior upper and lower bounds on the observer dimension are derived, which makes it possible to switch to an iterative procedure of finding an optimal solution. The discussion is set out for discrete-time dynamical systems.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2f1e4fecedc943379303db78fbd73ab7
21 Nc3eaa9a2675f4508895ddfd9b9207634
22 sg:journal.1136103
23 schema:name Minimum-order observers for discrete-time systems
24 schema:pagination 111-144
25 schema:productId N5d4dd9855928419d95e2087d3a3f6e61
26 Nb28b0fb756b7474baac5a4ee3a801131
27 Ndaf6d988ca614b1eae187505bf1548e6
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020708354
29 https://doi.org/10.1007/s10598-011-9093-y
30 schema:sdDatePublished 2019-04-10T14:03
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N19e8b5bf982645299faeba56b673c990
33 schema:url http://link.springer.com/10.1007/s10598-011-9093-y
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N19e8b5bf982645299faeba56b673c990 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N2f1e4fecedc943379303db78fbd73ab7 schema:volumeNumber 22
40 rdf:type schema:PublicationVolume
41 N5b308518b8404b479f90bf02c7b726b0 rdf:first sg:person.010310624321.26
42 rdf:rest rdf:nil
43 N5d4dd9855928419d95e2087d3a3f6e61 schema:name dimensions_id
44 schema:value pub.1020708354
45 rdf:type schema:PropertyValue
46 N61f2ffaad3f143889629b01fe511c49b rdf:first sg:person.012146212572.40
47 rdf:rest N5b308518b8404b479f90bf02c7b726b0
48 Nb28b0fb756b7474baac5a4ee3a801131 schema:name doi
49 schema:value 10.1007/s10598-011-9093-y
50 rdf:type schema:PropertyValue
51 Nc3eaa9a2675f4508895ddfd9b9207634 schema:issueNumber 2
52 rdf:type schema:PublicationIssue
53 Ndaf6d988ca614b1eae187505bf1548e6 schema:name readcube_id
54 schema:value 62ab9b0d53d48d1ae1b4dc5e2bb1b6642046d52a583801832ac290c987e86f58
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
60 schema:name Applied Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136103 schema:issn 1046-283X
63 1573-837X
64 schema:name Computational Mathematics and Modeling
65 rdf:type schema:Periodical
66 sg:person.010310624321.26 schema:familyName Korovin
67 schema:givenName S. K.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010310624321.26
69 rdf:type schema:Person
70 sg:person.012146212572.40 schema:familyName Emel’yanov
71 schema:givenName S. V.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146212572.40
73 rdf:type schema:Person
74 sg:pub.10.1007/s10625-005-0310-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025552040
75 https://doi.org/10.1007/s10625-005-0310-3
76 rdf:type schema:CreativeWork
77 sg:pub.10.1134/s0012266106100028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009455077
78 https://doi.org/10.1134/s0012266106100028
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/s0005-1098(98)00013-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037281297
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/00207177308932507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024547940
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1080/002077200291415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008023767
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/9.280770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061243848
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1109/9.293209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061243987
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1109/tac.1967.1098584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061469421
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/tac.1978.1101758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061472332
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/tac.1980.1102245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061472781
95 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...