Estimating the instability radii of polynomials of arbitrary degree View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10

AUTHORS

A. V. Kraev, A. S. Fursov

ABSTRACT

We consider the determination of the instability radius of polynomials. Sufficient conditions are stated for robust instability of a family of polynomials. A lower bound on the instability radius is given in the general case and the exact value of the instability radius is obtained for polynomials of fifth degree. The proof relies on the geometric properties of continuous curves in a plane combined with parametric properties of the roots of a family of polynomials and the apparatus of the Tsypkin-Polyak hodograph. Applications of the results are illustrated. More... »

PAGES

377-384

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10598-007-0032-x

DOI

http://dx.doi.org/10.1007/s10598-007-0032-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013080665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Kraev", 
        "givenName": "A. V.", 
        "id": "sg:person.012120136635.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120136635.36"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Fursov", 
        "givenName": "A. S.", 
        "id": "sg:person.013754677347.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754677347.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "We consider the determination of the instability radius of polynomials. Sufficient conditions are stated for robust instability of a family of polynomials. A lower bound on the instability radius is given in the general case and the exact value of the instability radius is obtained for polynomials of fifth degree. The proof relies on the geometric properties of continuous curves in a plane combined with parametric properties of the roots of a family of polynomials and the apparatus of the Tsypkin-Polyak hodograph. Applications of the results are illustrated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10598-007-0032-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136103", 
        "issn": [
          "1046-283X", 
          "1573-837X"
        ], 
        "name": "Computational Mathematics and Modeling", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Estimating the instability radii of polynomials of arbitrary degree", 
    "pagination": "377-384", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e50404f71b488b3ab1592d6288b7accd490f4cd02fa4406d8dd6910271a1381"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10598-007-0032-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013080665"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10598-007-0032-x", 
      "https://app.dimensions.ai/details/publication/pub.1013080665"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10598-007-0032-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10598-007-0032-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10598-007-0032-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10598-007-0032-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10598-007-0032-x'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10598-007-0032-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N056629fd5da049ed853ef74fbbebd789
4 schema:datePublished 2007-10
5 schema:datePublishedReg 2007-10-01
6 schema:description We consider the determination of the instability radius of polynomials. Sufficient conditions are stated for robust instability of a family of polynomials. A lower bound on the instability radius is given in the general case and the exact value of the instability radius is obtained for polynomials of fifth degree. The proof relies on the geometric properties of continuous curves in a plane combined with parametric properties of the roots of a family of polynomials and the apparatus of the Tsypkin-Polyak hodograph. Applications of the results are illustrated.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N3eb98c02185a4877878f8f54c490d4c4
11 Nf879991ab94f4c80a3de35e3e6ab8a9e
12 sg:journal.1136103
13 schema:name Estimating the instability radii of polynomials of arbitrary degree
14 schema:pagination 377-384
15 schema:productId N8fc3be93dfd2467fb50f093fb97ba42e
16 Nf88b407b72f043699924bbe7040293a3
17 Nfef1ed0bd85d42d6a2c7a5a7f7dcd04e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013080665
19 https://doi.org/10.1007/s10598-007-0032-x
20 schema:sdDatePublished 2019-04-10T21:31
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4b37f3c27871459b97a2d2a6af4f935e
23 schema:url http://link.springer.com/10.1007/s10598-007-0032-x
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N056629fd5da049ed853ef74fbbebd789 rdf:first sg:person.012120136635.36
28 rdf:rest N6ebd09f3eaa5444aa0c86f27b2521bbc
29 N3eb98c02185a4877878f8f54c490d4c4 schema:volumeNumber 18
30 rdf:type schema:PublicationVolume
31 N4b37f3c27871459b97a2d2a6af4f935e schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N6ebd09f3eaa5444aa0c86f27b2521bbc rdf:first sg:person.013754677347.37
34 rdf:rest rdf:nil
35 N8fc3be93dfd2467fb50f093fb97ba42e schema:name dimensions_id
36 schema:value pub.1013080665
37 rdf:type schema:PropertyValue
38 Nf879991ab94f4c80a3de35e3e6ab8a9e schema:issueNumber 4
39 rdf:type schema:PublicationIssue
40 Nf88b407b72f043699924bbe7040293a3 schema:name readcube_id
41 schema:value 3e50404f71b488b3ab1592d6288b7accd490f4cd02fa4406d8dd6910271a1381
42 rdf:type schema:PropertyValue
43 Nfef1ed0bd85d42d6a2c7a5a7f7dcd04e schema:name doi
44 schema:value 10.1007/s10598-007-0032-x
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136103 schema:issn 1046-283X
53 1573-837X
54 schema:name Computational Mathematics and Modeling
55 rdf:type schema:Periodical
56 sg:person.012120136635.36 schema:familyName Kraev
57 schema:givenName A. V.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120136635.36
59 rdf:type schema:Person
60 sg:person.013754677347.37 schema:familyName Fursov
61 schema:givenName A. S.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754677347.37
63 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...