A finite volume scheme with improved well modeling in subsurface flow simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Vasiliy Kramarenko, Kirill Nikitin, Yuri Vassilevski

ABSTRACT

We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate. More... »

PAGES

1023-1033

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5

DOI

http://dx.doi.org/10.1007/s10596-017-9685-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090910181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramarenko", 
        "givenName": "Vasiliy", 
        "id": "sg:person.07544050753.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07544050753.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Safety Institute", 
          "id": "https://www.grid.ac/institutes/grid.465416.4", 
          "name": [
            "Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia", 
            "Nuclear Safety Institute of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitin", 
        "givenName": "Kirill", 
        "id": "sg:person.011754555076.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754555076.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, Dolgoprudny, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilevski", 
        "givenName": "Yuri", 
        "id": "sg:person.012104371362.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000881637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05684-5_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004211110", 
          "https://doi.org/10.1007/978-3-319-05684-5_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-013-9387-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009308623", 
          "https://doi.org/10.1007/s10596-013-9387-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010400919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2010.04.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017879262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rnam-2013-0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024551196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rnam-2012-0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025383669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995080216050097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026902688", 
          "https://doi.org/10.1134/s1995080216050097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995080216050097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026902688", 
          "https://doi.org/10.1134/s1995080216050097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2009.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034163284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2010.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043353495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047169578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047921999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051098201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051098201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040607071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202514400041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/10528-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068946644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/6893-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068958784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3997/2214-4609.20141843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099411154"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10596-017-9685-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5340705", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1270275", 
        "issn": [
          "1420-0597", 
          "1573-1499"
        ], 
        "name": "Computational Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A finite volume scheme with improved well modeling in subsurface flow simulation", 
    "pagination": "1023-1033", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "269e48c974fdbebdd784f21f31923d9661070aa9b40fdf144ef47026867a0c49"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10596-017-9685-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090910181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10596-017-9685-5", 
      "https://app.dimensions.ai/details/publication/pub.1090910181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10596-017-9685-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10596-017-9685-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ned18cc020d734bfb9a8cda5eb74abfa6
4 schema:citation sg:pub.10.1007/978-3-319-05684-5_18
5 sg:pub.10.1007/s10596-013-9387-6
6 sg:pub.10.1134/s1995080216050097
7 https://doi.org/10.1016/j.crma.2005.10.010
8 https://doi.org/10.1016/j.jcp.2008.09.031
9 https://doi.org/10.1016/j.jcp.2010.01.035
10 https://doi.org/10.1016/j.jcp.2010.12.037
11 https://doi.org/10.1016/j.jcp.2013.05.013
12 https://doi.org/10.1016/j.jcp.2015.12.021
13 https://doi.org/10.1016/j.procs.2010.04.083
14 https://doi.org/10.1137/040607071
15 https://doi.org/10.1142/s0218202514400041
16 https://doi.org/10.1515/rjnamm.2009.014
17 https://doi.org/10.1515/rjnamm.2010.022
18 https://doi.org/10.1515/rnam-2012-0020
19 https://doi.org/10.1515/rnam-2013-0016
20 https://doi.org/10.2118/10528-pa
21 https://doi.org/10.2118/6893-pa
22 https://doi.org/10.3997/2214-4609.20141843
23 schema:datePublished 2017-12
24 schema:datePublishedReg 2017-12-01
25 schema:description We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N6cbc9f7329c34f0abf8543dada859bc6
30 Nc85b495f43af44d791cf63eec7e30973
31 sg:journal.1270275
32 schema:name A finite volume scheme with improved well modeling in subsurface flow simulation
33 schema:pagination 1023-1033
34 schema:productId N00dfb91fae3940d28df0230897ca65c4
35 N061a8e654b244e9c8f98674f83ef5e71
36 Nc6206c93bbf1443ca454015add540f76
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090910181
38 https://doi.org/10.1007/s10596-017-9685-5
39 schema:sdDatePublished 2019-04-11T10:04
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N9d52e6af42fa4c198271eb6ab7168b85
42 schema:url https://link.springer.com/10.1007%2Fs10596-017-9685-5
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N00dfb91fae3940d28df0230897ca65c4 schema:name doi
47 schema:value 10.1007/s10596-017-9685-5
48 rdf:type schema:PropertyValue
49 N061a8e654b244e9c8f98674f83ef5e71 schema:name dimensions_id
50 schema:value pub.1090910181
51 rdf:type schema:PropertyValue
52 N2204469695884c6ea9140c62ac983f04 rdf:first sg:person.011754555076.30
53 rdf:rest Nc451f9fab1eb4c6392736812e3b7f7ac
54 N6cbc9f7329c34f0abf8543dada859bc6 schema:issueNumber 5-6
55 rdf:type schema:PublicationIssue
56 N9d52e6af42fa4c198271eb6ab7168b85 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nc451f9fab1eb4c6392736812e3b7f7ac rdf:first sg:person.012104371362.91
59 rdf:rest rdf:nil
60 Nc6206c93bbf1443ca454015add540f76 schema:name readcube_id
61 schema:value 269e48c974fdbebdd784f21f31923d9661070aa9b40fdf144ef47026867a0c49
62 rdf:type schema:PropertyValue
63 Nc85b495f43af44d791cf63eec7e30973 schema:volumeNumber 21
64 rdf:type schema:PublicationVolume
65 Ned18cc020d734bfb9a8cda5eb74abfa6 rdf:first sg:person.07544050753.71
66 rdf:rest N2204469695884c6ea9140c62ac983f04
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
71 schema:name Interdisciplinary Engineering
72 rdf:type schema:DefinedTerm
73 sg:grant.5340705 http://pending.schema.org/fundedItem sg:pub.10.1007/s10596-017-9685-5
74 rdf:type schema:MonetaryGrant
75 sg:journal.1270275 schema:issn 1420-0597
76 1573-1499
77 schema:name Computational Geosciences
78 rdf:type schema:Periodical
79 sg:person.011754555076.30 schema:affiliation https://www.grid.ac/institutes/grid.465416.4
80 schema:familyName Nikitin
81 schema:givenName Kirill
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754555076.30
83 rdf:type schema:Person
84 sg:person.012104371362.91 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
85 schema:familyName Vassilevski
86 schema:givenName Yuri
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91
88 rdf:type schema:Person
89 sg:person.07544050753.71 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
90 schema:familyName Kramarenko
91 schema:givenName Vasiliy
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07544050753.71
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-319-05684-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004211110
95 https://doi.org/10.1007/978-3-319-05684-5_18
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10596-013-9387-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009308623
98 https://doi.org/10.1007/s10596-013-9387-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1134/s1995080216050097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026902688
101 https://doi.org/10.1134/s1995080216050097
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.crma.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084591
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jcp.2008.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000881637
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jcp.2010.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047169578
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jcp.2010.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921999
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jcp.2013.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010400919
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jcp.2015.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051098201
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.procs.2010.04.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017879262
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1137/040607071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844969
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1142/s0218202514400041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963540
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1515/rjnamm.2009.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034163284
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1515/rjnamm.2010.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043353495
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1515/rnam-2012-0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025383669
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1515/rnam-2013-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024551196
128 rdf:type schema:CreativeWork
129 https://doi.org/10.2118/10528-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068946644
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2118/6893-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068958784
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3997/2214-4609.20141843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099411154
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
136 schema:name Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
137 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.465296.a schema:alternateName Institute of Numerical Mathematics
140 schema:name Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.465416.4 schema:alternateName Nuclear Safety Institute
143 schema:name Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
144 Nuclear Safety Institute of Russian Academy of Sciences, Moscow, Russia
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...