A finite volume scheme with improved well modeling in subsurface flow simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Vasiliy Kramarenko, Kirill Nikitin, Yuri Vassilevski

ABSTRACT

We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate. More... »

PAGES

1023-1033

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5

DOI

http://dx.doi.org/10.1007/s10596-017-9685-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090910181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramarenko", 
        "givenName": "Vasiliy", 
        "id": "sg:person.07544050753.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07544050753.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Safety Institute", 
          "id": "https://www.grid.ac/institutes/grid.465416.4", 
          "name": [
            "Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia", 
            "Nuclear Safety Institute of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitin", 
        "givenName": "Kirill", 
        "id": "sg:person.011754555076.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754555076.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, Dolgoprudny, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilevski", 
        "givenName": "Yuri", 
        "id": "sg:person.012104371362.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000881637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05684-5_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004211110", 
          "https://doi.org/10.1007/978-3-319-05684-5_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-013-9387-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009308623", 
          "https://doi.org/10.1007/s10596-013-9387-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010400919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2010.04.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017879262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rnam-2013-0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024551196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rnam-2012-0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025383669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995080216050097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026902688", 
          "https://doi.org/10.1134/s1995080216050097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995080216050097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026902688", 
          "https://doi.org/10.1134/s1995080216050097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2009.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034163284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2010.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043353495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047169578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047921999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051098201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051098201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040607071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202514400041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/10528-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068946644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/6893-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068958784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3997/2214-4609.20141843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099411154"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10596-017-9685-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5340705", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1270275", 
        "issn": [
          "1420-0597", 
          "1573-1499"
        ], 
        "name": "Computational Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A finite volume scheme with improved well modeling in subsurface flow simulation", 
    "pagination": "1023-1033", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "269e48c974fdbebdd784f21f31923d9661070aa9b40fdf144ef47026867a0c49"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10596-017-9685-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090910181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10596-017-9685-5", 
      "https://app.dimensions.ai/details/publication/pub.1090910181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10596-017-9685-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10596-017-9685-5'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10596-017-9685-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N1bff71eb57f049918f4c459179b522a2
4 schema:citation sg:pub.10.1007/978-3-319-05684-5_18
5 sg:pub.10.1007/s10596-013-9387-6
6 sg:pub.10.1134/s1995080216050097
7 https://doi.org/10.1016/j.crma.2005.10.010
8 https://doi.org/10.1016/j.jcp.2008.09.031
9 https://doi.org/10.1016/j.jcp.2010.01.035
10 https://doi.org/10.1016/j.jcp.2010.12.037
11 https://doi.org/10.1016/j.jcp.2013.05.013
12 https://doi.org/10.1016/j.jcp.2015.12.021
13 https://doi.org/10.1016/j.procs.2010.04.083
14 https://doi.org/10.1137/040607071
15 https://doi.org/10.1142/s0218202514400041
16 https://doi.org/10.1515/rjnamm.2009.014
17 https://doi.org/10.1515/rjnamm.2010.022
18 https://doi.org/10.1515/rnam-2012-0020
19 https://doi.org/10.1515/rnam-2013-0016
20 https://doi.org/10.2118/10528-pa
21 https://doi.org/10.2118/6893-pa
22 https://doi.org/10.3997/2214-4609.20141843
23 schema:datePublished 2017-12
24 schema:datePublishedReg 2017-12-01
25 schema:description We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N35ec354f3d7043c595a22e2de6fde8da
30 N4568f321df2b49c5bdd08596bf1f963d
31 sg:journal.1270275
32 schema:name A finite volume scheme with improved well modeling in subsurface flow simulation
33 schema:pagination 1023-1033
34 schema:productId N393dd2728ece40a788106626063d77ea
35 N88621be8d54944089f7c91289434ad71
36 Na28d4d77cf144b08aff5e6355caad3b7
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090910181
38 https://doi.org/10.1007/s10596-017-9685-5
39 schema:sdDatePublished 2019-04-11T10:04
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N88f0bee8c979462c9da3243427a55ae1
42 schema:url https://link.springer.com/10.1007%2Fs10596-017-9685-5
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N1bff71eb57f049918f4c459179b522a2 rdf:first sg:person.07544050753.71
47 rdf:rest N9c011cd24bc14b5db1cf85dab0b3330c
48 N35ec354f3d7043c595a22e2de6fde8da schema:issueNumber 5-6
49 rdf:type schema:PublicationIssue
50 N393dd2728ece40a788106626063d77ea schema:name doi
51 schema:value 10.1007/s10596-017-9685-5
52 rdf:type schema:PropertyValue
53 N4568f321df2b49c5bdd08596bf1f963d schema:volumeNumber 21
54 rdf:type schema:PublicationVolume
55 N88621be8d54944089f7c91289434ad71 schema:name readcube_id
56 schema:value 269e48c974fdbebdd784f21f31923d9661070aa9b40fdf144ef47026867a0c49
57 rdf:type schema:PropertyValue
58 N88f0bee8c979462c9da3243427a55ae1 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N9c011cd24bc14b5db1cf85dab0b3330c rdf:first sg:person.011754555076.30
61 rdf:rest Na2084ab0791140308784c05833a6d03b
62 Na2084ab0791140308784c05833a6d03b rdf:first sg:person.012104371362.91
63 rdf:rest rdf:nil
64 Na28d4d77cf144b08aff5e6355caad3b7 schema:name dimensions_id
65 schema:value pub.1090910181
66 rdf:type schema:PropertyValue
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
71 schema:name Interdisciplinary Engineering
72 rdf:type schema:DefinedTerm
73 sg:grant.5340705 http://pending.schema.org/fundedItem sg:pub.10.1007/s10596-017-9685-5
74 rdf:type schema:MonetaryGrant
75 sg:journal.1270275 schema:issn 1420-0597
76 1573-1499
77 schema:name Computational Geosciences
78 rdf:type schema:Periodical
79 sg:person.011754555076.30 schema:affiliation https://www.grid.ac/institutes/grid.465416.4
80 schema:familyName Nikitin
81 schema:givenName Kirill
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754555076.30
83 rdf:type schema:Person
84 sg:person.012104371362.91 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
85 schema:familyName Vassilevski
86 schema:givenName Yuri
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91
88 rdf:type schema:Person
89 sg:person.07544050753.71 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
90 schema:familyName Kramarenko
91 schema:givenName Vasiliy
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07544050753.71
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-319-05684-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004211110
95 https://doi.org/10.1007/978-3-319-05684-5_18
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10596-013-9387-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009308623
98 https://doi.org/10.1007/s10596-013-9387-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1134/s1995080216050097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026902688
101 https://doi.org/10.1134/s1995080216050097
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.crma.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084591
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jcp.2008.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000881637
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jcp.2010.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047169578
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jcp.2010.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921999
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jcp.2013.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010400919
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jcp.2015.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051098201
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.procs.2010.04.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017879262
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1137/040607071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844969
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1142/s0218202514400041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963540
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1515/rjnamm.2009.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034163284
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1515/rjnamm.2010.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043353495
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1515/rnam-2012-0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025383669
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1515/rnam-2013-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024551196
128 rdf:type schema:CreativeWork
129 https://doi.org/10.2118/10528-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068946644
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2118/6893-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068958784
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3997/2214-4609.20141843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099411154
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
136 schema:name Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
137 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.465296.a schema:alternateName Institute of Numerical Mathematics
140 schema:name Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.465416.4 schema:alternateName Nuclear Safety Institute
143 schema:name Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russia
144 Nuclear Safety Institute of Russian Academy of Sciences, Moscow, Russia
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...