Multiple-point geostatistical modeling based on the cross-correlation functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-06

AUTHORS

Pejman Tahmasebi, Ardeshir Hezarkhani, Muhammad Sahimi

ABSTRACT

An important issue in reservoir modeling is accurate generation of complex structures. The problem is difficult because the connectivity of the flow paths must be preserved. Multiple-point geostatistics is one of the most effective methods that can model the spatial patterns of geological structures, which is based on an informative geological training image that contains the variability, connectivity, and structural properties of a reservoir. Several pixel- and pattern-based methods have been developed in the past. In particular, pattern-based algorithms have become popular due to their ability for honoring the connectivity and geological features of a reservoir. But a shortcoming of such methods is that they require a massive data base, which make them highly memory- and CPU-intensive. In this paper, we propose a novel methodology for which there is no need to construct pattern data base and small data event. A new function for the similarity of the generated pattern and the training image, based on a cross-correlation (CC) function, is proposed that can be used with both categorical and continuous training images. We combine the CC function with an overlap strategy and a new approach, adaptive recursive template splitting along a raster path, in order to develop an algorithm, which we call cross-correlation simulation (CCSIM), for generation of the realizations of a reservoir with accurate conditioning and continuity. The performance of CCSIM is tested for a variety of training images. The results, when compared with those of the previous methods, indicate significant improvement in the CPU and memory requirements. More... »

PAGES

779-797

References to SciGraph publications

  • 2004-07. Generalized Sequential Gaussian Simulation on Group Size ν and Screen-Effect Approximations for Large Field Simulations in MATHEMATICAL GEOSCIENCES
  • 2008-12. Unbiased Resource Evaluations with Kriging and Stochastic Models of Heterogeneous Rock Properties in NATURAL RESOURCES RESEARCH
  • 2010-07. Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling in MATHEMATICAL GEOSCIENCES
  • 2011-09. The Kappa model of probability and higher-order rock sequences in COMPUTATIONAL GEOSCIENCES
  • 2008-03. Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization in COMPUTATIONAL GEOSCIENCES
  • 2010-01. High-order Statistics of Spatial Random Fields: Exploring Spatial Cumulants for Modeling Complex Non-Gaussian and Non-linear Phenomena in MATHEMATICAL GEOSCIENCES
  • 2007-02. Conditional Simulation with Patterns in MATHEMATICAL GEOSCIENCES
  • 2008-05. A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems in MATHEMATICAL GEOSCIENCES
  • 2011-04. An Improved Parallel Multiple-point Algorithm Using a List Approach in MATHEMATICAL GEOSCIENCES
  • 2008-10. Fast FILTERSIM Simulation with Score-based Distance in MATHEMATICAL GEOSCIENCES
  • 2008-02. Multiple-Point Simulations Constrained by Continuous Auxiliary Data in MATHEMATICAL GEOSCIENCES
  • 2010-01-04. Application of Multiple-Point Geostatistics on Modelling Groundwater Flow and Transport in a Cross-Bedded Aquifer in GEOENV VII – GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS
  • 1994. Conditional fBm Simulation with Dual Kriging in GEOSTATISTICS FOR THE NEXT CENTURY
  • 1987-04. Uses and abuses of cross-validation in geostatistics in MATHEMATICAL GEOSCIENCES
  • 2005. Higher Order Models using Entropy, Markov Random Fields and Sequential Simulation in GEOSTATISTICS BANFF 2004
  • 2004-07. Indicator Simulation Accounting for Multiple-Point Statistics in MATHEMATICAL GEOSCIENCES
  • 2009-08. Two-dimensional Conditional Simulations Based on the Wavelet Decomposition of Training Images in MATHEMATICAL GEOSCIENCES
  • 2009. Compensation of Translational Displacement in Time Series Clustering Using Cross Correlation in ADVANCES IN INTELLIGENT DATA ANALYSIS VIII
  • 1993. Multivariate Geostatistics: Beyond Bivariate Moments in GEOSTATISTICS TRÓIA ’92
  • 2002-07. Combining Knowledge from Diverse Sources: An Alternative to Traditional Data Independence Hypotheses in MATHEMATICAL GEOSCIENCES
  • 1993. Geostatistics: Roadblocks and Challenges in GEOSTATISTICS TRÓIA ’92
  • 2002-01. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics in MATHEMATICAL GEOSCIENCES
  • 1993-04. Entropy and spatial disorder in MATHEMATICAL GEOSCIENCES
  • 2005. Integrating Multiple-point Statistics into Sequential Simulation Algorithms in GEOSTATISTICS BANFF 2004
  • 1984. Three-Dimensional, Frequency-Domain Simulations of Geological Variables in GEOSTATISTICS FOR NATURAL RESOURCES CHARACTERIZATION
  • 2005. Directional Metropolis : Hastings Updates for Posteriors with Nonlinear Likelihoods in GEOSTATISTICS BANFF 2004
  • 1998-07. Modeling of Fluvial Reservoirs with Object Models in MATHEMATICAL GEOSCIENCES
  • 2006-01. Filter-Based Classification of Training Image Patterns for Spatial Simulation in MATHEMATICAL GEOSCIENCES
  • 2005. Reservoir Facies Modelling: New Advances in MPS in GEOSTATISTICS BANFF 2004
  • 1997. The Conditional Simulation of a Cox Process with Application to Deposits with Discrete Particles in GEOSTATISTICS WOLLONGONG’ 96
  • 1999-10. Well Conditioning in a Fluvial Reservoir Model in MATHEMATICAL GEOSCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10596-012-9287-1

    DOI

    http://dx.doi.org/10.1007/s10596-012-9287-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050574504


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Amirkabir University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Department of Mining, Metallurgy and Petroleum Engineering, Amir Kabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tahmasebi", 
            "givenName": "Pejman", 
            "id": "sg:person.012502053235.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502053235.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amirkabir University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Department of Mining, Metallurgy and Petroleum Engineering, Amir Kabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hezarkhani", 
            "givenName": "Ardeshir", 
            "id": "sg:person.012776541613.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776541613.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 90089-1211, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sahimi", 
            "givenName": "Muhammad", 
            "id": "sg:person.0656665166.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656665166.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11004-009-9235-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002039216", 
              "https://doi.org/10.1007/s11004-009-9235-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-009-9235-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002039216", 
              "https://doi.org/10.1007/s11004-009-9235-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-3610-1_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002434965", 
              "https://doi.org/10.1007/978-1-4020-3610-1_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021769526425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004119105", 
              "https://doi.org/10.1023/a:1021769526425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-005-9004-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004997969", 
              "https://doi.org/10.1007/s11004-005-9004-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-011-9328-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007943895", 
              "https://doi.org/10.1007/s11004-011-9328-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-3610-1_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008788282", 
              "https://doi.org/10.1007/978-1-4020-3610-1_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-006-9075-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011692315", 
              "https://doi.org/10.1007/s11004-006-9075-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-006-9075-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011692315", 
              "https://doi.org/10.1007/s11004-006-9075-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:matg.0000037736.00489.b5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012716721", 
              "https://doi.org/10.1023/b:matg.0000037736.00489.b5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-3610-1_101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013188913", 
              "https://doi.org/10.1007/978-1-4020-3610-1_101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10596-007-9063-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013944299", 
              "https://doi.org/10.1007/s10596-007-9063-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10596-007-9063-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013944299", 
              "https://doi.org/10.1007/s10596-007-9063-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-2322-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015278617", 
              "https://doi.org/10.1007/978-90-481-2322-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-2322-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015278617", 
              "https://doi.org/10.1007/978-90-481-2322-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-3610-1_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016242913", 
              "https://doi.org/10.1007/978-1-4020-3610-1_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chaos.2006.06.100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016293226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2007wr006635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018312163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00901422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019504467", 
              "https://doi.org/10.1007/bf00901422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014009426274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022589901", 
              "https://doi.org/10.1023/a:1014009426274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-008-9157-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022950359", 
              "https://doi.org/10.1007/s11004-008-9157-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-008-9157-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022950359", 
              "https://doi.org/10.1007/s11004-008-9157-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00897749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023316058", 
              "https://doi.org/10.1007/bf00897749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00897749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023316058", 
              "https://doi.org/10.1007/bf00897749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2006.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023977704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007576801266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025241481", 
              "https://doi.org/10.1023/a:1007576801266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-3699-7_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026303618", 
              "https://doi.org/10.1007/978-94-009-3699-7_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-007-9142-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026489848", 
              "https://doi.org/10.1007/s11004-007-9142-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-007-9142-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026489848", 
              "https://doi.org/10.1007/s11004-007-9142-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-010-9276-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029706895", 
              "https://doi.org/10.1007/s11004-010-9276-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-010-9276-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029706895", 
              "https://doi.org/10.1007/s11004-010-9276-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:matg.0000037737.11615.df", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030120995", 
              "https://doi.org/10.1023/b:matg.0000037737.11615.df"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-009-9258-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031556172", 
              "https://doi.org/10.1007/s11004-009-9258-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-009-9258-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031556172", 
              "https://doi.org/10.1007/s11004-009-9258-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10596-011-9234-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032171163", 
              "https://doi.org/10.1007/s10596-011-9234-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2005.03.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036986971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2005.03.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036986971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-1739-5_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037763501", 
              "https://doi.org/10.1007/978-94-011-1739-5_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-1739-5_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037763501", 
              "https://doi.org/10.1007/978-94-011-1739-5_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-1739-5_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039174537", 
              "https://doi.org/10.1007/978-94-011-1739-5_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-1739-5_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039174537", 
              "https://doi.org/10.1007/978-94-011-1739-5_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2008wr007621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042440941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1745-6584.2007.00340.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043756569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advwatres.2005.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045156094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advwatres.2005.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045156094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.28670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045774590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-3121.1989.tb00344.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048009770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2005.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048111055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2005.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048111055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-0824-9_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051076671", 
              "https://doi.org/10.1007/978-94-011-0824-9_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-0824-9_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051076671", 
              "https://doi.org/10.1007/978-94-011-0824-9_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-008-9154-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051441714", 
              "https://doi.org/10.1007/s11004-008-9154-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-008-9154-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051441714", 
              "https://doi.org/10.1007/s11004-008-9154-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016047012594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053573489", 
              "https://doi.org/10.1023/a:1016047012594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-008-9082-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053635778", 
              "https://doi.org/10.1007/s11053-008-9082-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03915-7_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053718390", 
              "https://doi.org/10.1007/978-3-642-03915-7_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.056311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060735974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.056311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060735974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.254061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcise.2003.1208648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061392642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.1984.4767532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1306/02170403078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064919902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2113/gsecongeo.69.5.673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068930581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/10976-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068946997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1425829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069488849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5726-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089530699", 
              "https://doi.org/10.1007/978-94-011-5726-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5726-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089530699", 
              "https://doi.org/10.1007/978-94-011-5726-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2008.4711888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095112588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/77425-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096945309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/49026-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096972366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3997/2214-4609.201403070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099269305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3997/2214-4609.201403072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099269307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3997/2214-4609.201411323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099301730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3997/2214-4609.20146404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099318424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9783527636693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108143465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470316993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109496282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109496282", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-06", 
        "datePublishedReg": "2012-06-01", 
        "description": "An important issue in reservoir modeling is accurate generation of complex structures. The problem is difficult because the connectivity of the flow paths must be preserved. Multiple-point geostatistics is one of the most effective methods that can model the spatial patterns of geological structures, which is based on an informative geological training image that contains the variability, connectivity, and structural properties of a reservoir. Several pixel- and pattern-based methods have been developed in the past. In particular, pattern-based algorithms have become popular due to their ability for honoring the connectivity and geological features of a reservoir. But a shortcoming of such methods is that they require a massive data base, which make them highly memory- and CPU-intensive. In this paper, we propose a novel methodology for which there is no need to construct pattern data base and small data event. A new function for the similarity of the generated pattern and the training image, based on a cross-correlation (CC) function, is proposed that can be used with both categorical and continuous training images. We combine the CC function with an overlap strategy and a new approach, adaptive recursive template splitting along a raster path, in order to develop an algorithm, which we call cross-correlation simulation (CCSIM), for generation of the realizations of a reservoir with accurate conditioning and continuity. The performance of CCSIM is tested for a variety of training images. The results, when compared with those of the previous methods, indicate significant improvement in the CPU and memory requirements.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10596-012-9287-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1270275", 
            "issn": [
              "1420-0597", 
              "1573-1499"
            ], 
            "name": "Computational Geosciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Multiple-point geostatistical modeling based on the cross-correlation functions", 
        "pagination": "779-797", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f0eb85714568c73e04ac825678b5c1132ea3978a4de4d2d251ab0ade61fa0295"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10596-012-9287-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050574504"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10596-012-9287-1", 
          "https://app.dimensions.ai/details/publication/pub.1050574504"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000595.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10596-012-9287-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10596-012-9287-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10596-012-9287-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10596-012-9287-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10596-012-9287-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      21 PREDICATES      86 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10596-012-9287-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N211bf744214349e4a64f455422f54e99
    4 schema:citation sg:pub.10.1007/978-1-4020-3610-1_10
    5 sg:pub.10.1007/978-1-4020-3610-1_101
    6 sg:pub.10.1007/978-1-4020-3610-1_22
    7 sg:pub.10.1007/978-1-4020-3610-1_57
    8 sg:pub.10.1007/978-3-642-03915-7_7
    9 sg:pub.10.1007/978-90-481-2322-3_13
    10 sg:pub.10.1007/978-94-009-3699-7_30
    11 sg:pub.10.1007/978-94-011-0824-9_44
    12 sg:pub.10.1007/978-94-011-1739-5_12
    13 sg:pub.10.1007/978-94-011-1739-5_18
    14 sg:pub.10.1007/978-94-011-5726-1_4
    15 sg:pub.10.1007/bf00897749
    16 sg:pub.10.1007/bf00901422
    17 sg:pub.10.1007/s10596-007-9063-9
    18 sg:pub.10.1007/s10596-011-9234-6
    19 sg:pub.10.1007/s11004-005-9004-x
    20 sg:pub.10.1007/s11004-006-9075-3
    21 sg:pub.10.1007/s11004-007-9142-4
    22 sg:pub.10.1007/s11004-008-9154-8
    23 sg:pub.10.1007/s11004-008-9157-5
    24 sg:pub.10.1007/s11004-009-9235-3
    25 sg:pub.10.1007/s11004-009-9258-9
    26 sg:pub.10.1007/s11004-010-9276-7
    27 sg:pub.10.1007/s11004-011-9328-7
    28 sg:pub.10.1007/s11053-008-9082-9
    29 sg:pub.10.1023/a:1007576801266
    30 sg:pub.10.1023/a:1014009426274
    31 sg:pub.10.1023/a:1016047012594
    32 sg:pub.10.1023/a:1021769526425
    33 sg:pub.10.1023/b:matg.0000037736.00489.b5
    34 sg:pub.10.1023/b:matg.0000037737.11615.df
    35 https://app.dimensions.ai/details/publication/pub.1109496282
    36 https://doi.org/10.1002/9780470316993
    37 https://doi.org/10.1002/9783527636693
    38 https://doi.org/10.1016/j.advwatres.2005.08.002
    39 https://doi.org/10.1016/j.chaos.2006.06.100
    40 https://doi.org/10.1016/j.patrec.2005.03.022
    41 https://doi.org/10.1016/j.petrol.2005.06.004
    42 https://doi.org/10.1016/j.petrol.2006.10.011
    43 https://doi.org/10.1029/2007wr006635
    44 https://doi.org/10.1029/2008wr007621
    45 https://doi.org/10.1103/physreve.75.056311
    46 https://doi.org/10.1109/34.254061
    47 https://doi.org/10.1109/icip.2008.4711888
    48 https://doi.org/10.1109/mcise.2003.1208648
    49 https://doi.org/10.1109/tpami.1984.4767532
    50 https://doi.org/10.1111/j.1365-3121.1989.tb00344.x
    51 https://doi.org/10.1111/j.1745-6584.2007.00340.x
    52 https://doi.org/10.1117/12.28670
    53 https://doi.org/10.1306/02170403078
    54 https://doi.org/10.2113/gsecongeo.69.5.673
    55 https://doi.org/10.2118/10976-pa
    56 https://doi.org/10.2118/49026-ms
    57 https://doi.org/10.2118/77425-ms
    58 https://doi.org/10.2307/1425829
    59 https://doi.org/10.3997/2214-4609.201403070
    60 https://doi.org/10.3997/2214-4609.201403072
    61 https://doi.org/10.3997/2214-4609.201411323
    62 https://doi.org/10.3997/2214-4609.20146404
    63 schema:datePublished 2012-06
    64 schema:datePublishedReg 2012-06-01
    65 schema:description An important issue in reservoir modeling is accurate generation of complex structures. The problem is difficult because the connectivity of the flow paths must be preserved. Multiple-point geostatistics is one of the most effective methods that can model the spatial patterns of geological structures, which is based on an informative geological training image that contains the variability, connectivity, and structural properties of a reservoir. Several pixel- and pattern-based methods have been developed in the past. In particular, pattern-based algorithms have become popular due to their ability for honoring the connectivity and geological features of a reservoir. But a shortcoming of such methods is that they require a massive data base, which make them highly memory- and CPU-intensive. In this paper, we propose a novel methodology for which there is no need to construct pattern data base and small data event. A new function for the similarity of the generated pattern and the training image, based on a cross-correlation (CC) function, is proposed that can be used with both categorical and continuous training images. We combine the CC function with an overlap strategy and a new approach, adaptive recursive template splitting along a raster path, in order to develop an algorithm, which we call cross-correlation simulation (CCSIM), for generation of the realizations of a reservoir with accurate conditioning and continuity. The performance of CCSIM is tested for a variety of training images. The results, when compared with those of the previous methods, indicate significant improvement in the CPU and memory requirements.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree false
    69 schema:isPartOf N318ed9274f194247a5f529494122fd3e
    70 Na9e928c8a7de4c96949ff8a0ed96d834
    71 sg:journal.1270275
    72 schema:name Multiple-point geostatistical modeling based on the cross-correlation functions
    73 schema:pagination 779-797
    74 schema:productId Na48c174c640a4f34be29cf33ac685dab
    75 Nbc34b6f2e7204968b89a5687ac10fbe6
    76 Nc976c95fa3f0458c9e677b49875d6219
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050574504
    78 https://doi.org/10.1007/s10596-012-9287-1
    79 schema:sdDatePublished 2019-04-10T15:13
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N08106bc71755423fb0231c3517ee3671
    82 schema:url http://link.springer.com/10.1007%2Fs10596-012-9287-1
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N08106bc71755423fb0231c3517ee3671 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N211bf744214349e4a64f455422f54e99 rdf:first sg:person.012502053235.09
    89 rdf:rest Nf13afb5b8b1a47368658af08efb8c195
    90 N318ed9274f194247a5f529494122fd3e schema:issueNumber 3
    91 rdf:type schema:PublicationIssue
    92 N4defd03df26b4097a22aeabac7f86be0 rdf:first sg:person.0656665166.83
    93 rdf:rest rdf:nil
    94 Na48c174c640a4f34be29cf33ac685dab schema:name doi
    95 schema:value 10.1007/s10596-012-9287-1
    96 rdf:type schema:PropertyValue
    97 Na9e928c8a7de4c96949ff8a0ed96d834 schema:volumeNumber 16
    98 rdf:type schema:PublicationVolume
    99 Nbc34b6f2e7204968b89a5687ac10fbe6 schema:name dimensions_id
    100 schema:value pub.1050574504
    101 rdf:type schema:PropertyValue
    102 Nc976c95fa3f0458c9e677b49875d6219 schema:name readcube_id
    103 schema:value f0eb85714568c73e04ac825678b5c1132ea3978a4de4d2d251ab0ade61fa0295
    104 rdf:type schema:PropertyValue
    105 Nf13afb5b8b1a47368658af08efb8c195 rdf:first sg:person.012776541613.62
    106 rdf:rest N4defd03df26b4097a22aeabac7f86be0
    107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Information and Computing Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Artificial Intelligence and Image Processing
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1270275 schema:issn 1420-0597
    114 1573-1499
    115 schema:name Computational Geosciences
    116 rdf:type schema:Periodical
    117 sg:person.012502053235.09 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
    118 schema:familyName Tahmasebi
    119 schema:givenName Pejman
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502053235.09
    121 rdf:type schema:Person
    122 sg:person.012776541613.62 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
    123 schema:familyName Hezarkhani
    124 schema:givenName Ardeshir
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776541613.62
    126 rdf:type schema:Person
    127 sg:person.0656665166.83 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    128 schema:familyName Sahimi
    129 schema:givenName Muhammad
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656665166.83
    131 rdf:type schema:Person
    132 sg:pub.10.1007/978-1-4020-3610-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008788282
    133 https://doi.org/10.1007/978-1-4020-3610-1_10
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-1-4020-3610-1_101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013188913
    136 https://doi.org/10.1007/978-1-4020-3610-1_101
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-1-4020-3610-1_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016242913
    139 https://doi.org/10.1007/978-1-4020-3610-1_22
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-1-4020-3610-1_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002434965
    142 https://doi.org/10.1007/978-1-4020-3610-1_57
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-642-03915-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053718390
    145 https://doi.org/10.1007/978-3-642-03915-7_7
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-90-481-2322-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015278617
    148 https://doi.org/10.1007/978-90-481-2322-3_13
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-94-009-3699-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026303618
    151 https://doi.org/10.1007/978-94-009-3699-7_30
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/978-94-011-0824-9_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051076671
    154 https://doi.org/10.1007/978-94-011-0824-9_44
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-94-011-1739-5_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037763501
    157 https://doi.org/10.1007/978-94-011-1739-5_12
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-94-011-1739-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039174537
    160 https://doi.org/10.1007/978-94-011-1739-5_18
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/978-94-011-5726-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089530699
    163 https://doi.org/10.1007/978-94-011-5726-1_4
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf00897749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316058
    166 https://doi.org/10.1007/bf00897749
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf00901422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019504467
    169 https://doi.org/10.1007/bf00901422
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s10596-007-9063-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013944299
    172 https://doi.org/10.1007/s10596-007-9063-9
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10596-011-9234-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032171163
    175 https://doi.org/10.1007/s10596-011-9234-6
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11004-005-9004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004997969
    178 https://doi.org/10.1007/s11004-005-9004-x
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11004-006-9075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011692315
    181 https://doi.org/10.1007/s11004-006-9075-3
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11004-007-9142-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026489848
    184 https://doi.org/10.1007/s11004-007-9142-4
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11004-008-9154-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051441714
    187 https://doi.org/10.1007/s11004-008-9154-8
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s11004-008-9157-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022950359
    190 https://doi.org/10.1007/s11004-008-9157-5
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s11004-009-9235-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002039216
    193 https://doi.org/10.1007/s11004-009-9235-3
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s11004-009-9258-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031556172
    196 https://doi.org/10.1007/s11004-009-9258-9
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s11004-010-9276-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029706895
    199 https://doi.org/10.1007/s11004-010-9276-7
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s11004-011-9328-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007943895
    202 https://doi.org/10.1007/s11004-011-9328-7
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s11053-008-9082-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053635778
    205 https://doi.org/10.1007/s11053-008-9082-9
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1023/a:1007576801266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025241481
    208 https://doi.org/10.1023/a:1007576801266
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1023/a:1014009426274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022589901
    211 https://doi.org/10.1023/a:1014009426274
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1023/a:1016047012594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053573489
    214 https://doi.org/10.1023/a:1016047012594
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1023/a:1021769526425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004119105
    217 https://doi.org/10.1023/a:1021769526425
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1023/b:matg.0000037736.00489.b5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012716721
    220 https://doi.org/10.1023/b:matg.0000037736.00489.b5
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1023/b:matg.0000037737.11615.df schema:sameAs https://app.dimensions.ai/details/publication/pub.1030120995
    223 https://doi.org/10.1023/b:matg.0000037737.11615.df
    224 rdf:type schema:CreativeWork
    225 https://app.dimensions.ai/details/publication/pub.1109496282 schema:CreativeWork
    226 https://doi.org/10.1002/9780470316993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496282
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1002/9783527636693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108143465
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.advwatres.2005.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045156094
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.chaos.2006.06.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016293226
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.patrec.2005.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036986971
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.petrol.2005.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048111055
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.petrol.2006.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023977704
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1029/2007wr006635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018312163
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1029/2008wr007621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042440941
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1103/physreve.75.056311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060735974
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/34.254061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155931
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1109/icip.2008.4711888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095112588
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1109/mcise.2003.1208648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392642
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1109/tpami.1984.4767532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742051
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1111/j.1365-3121.1989.tb00344.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048009770
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1111/j.1745-6584.2007.00340.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043756569
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1117/12.28670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045774590
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1306/02170403078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064919902
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.2113/gsecongeo.69.5.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068930581
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.2118/10976-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068946997
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.2118/49026-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096972366
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.2118/77425-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096945309
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.2307/1425829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069488849
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.3997/2214-4609.201403070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099269305
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.3997/2214-4609.201403072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099269307
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.3997/2214-4609.201411323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099301730
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.3997/2214-4609.20146404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099318424
    279 rdf:type schema:CreativeWork
    280 https://www.grid.ac/institutes/grid.411368.9 schema:alternateName Amirkabir University of Technology
    281 schema:name Department of Mining, Metallurgy and Petroleum Engineering, Amir Kabir University of Technology, Tehran, Iran
    282 rdf:type schema:Organization
    283 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
    284 schema:name Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 90089-1211, Los Angeles, CA, USA
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...