Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

Pauline Souloumiac, Kristian Krabbenhøft, Yves M. Leroy, Bertrand Maillot

ABSTRACT

The objective is to capture the 3D spatial variation in the failure mode occurring in accretionary wedges and their analog experiments in the laboratory from the sole knowledge of the material strength and the structure geometry. The proposed methodology relies on the maximum strength theorem which is inherited from the kinematic approach of the classical limit analysis. It selects the optimum virtual velocity field which minimizes the tectonic force. These velocity fields are constructed by interpolation thanks to the spatial discretization conducted with ten-noded tetrahedra in 3D and six-noded triangles in 2D. The resulting, discrete optimization problem is first presented emphasizing the dual formalism found most appropriate in the presence of nonlinear strength criteria, such as the Drucker–Prager criterion used in all reported examples. The numerical scheme is first applied to a perfectly triangular 2D wedge. It is known that failure occurs to the back for topographic slope smaller than and to the front for slope larger than a critical slope, defining subcritical and supercritical slope stability conditions, respectively. The failure mode is characterized by the activation of a ramp, its conjugate back thrust, and the partial or complete activation of the décollement. It is shown that the critical slope is captured precisely by the proposed numerical scheme, the ramp, and the back thrust corresponding to regions of localized virtual strain. The influence of the back-wall friction on this critical slope is explored. It is found that the failure mechanism reduces to a thrust rooting at the base of the back wall and the absence of back thrust, for small enough values of the friction angle. This influence is well explained by the Mohr construction and further validated with experimental results with sand, considered as an analog material. 3D applications of the same methodology are presented in a companion paper. More... »

PAGES

793-811

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10596-010-9184-4

DOI

http://dx.doi.org/10.1007/s10596-010-9184-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038951965


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire MSS-Mat, CNRS, Ecole Centrale Paris, Chatenay Malabry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Souloumiac", 
        "givenName": "Pauline", 
        "id": "sg:person.07773443043.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07773443043.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "Centre for Geotechnical and Materials Modelling, University of Newcastle, 2308, Callaghan, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krabbenh\u00f8ft", 
        "givenName": "Kristian", 
        "id": "sg:person.01310716602.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310716602.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire de G\u00e9ologie, CNRS, \u00c9cole Normale Sup\u00e9rieure, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leroy", 
        "givenName": "Yves M.", 
        "id": "sg:person.01360010723.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360010723.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "D\u00e9partement G\u00e9osciences et Environnement, Universit\u00e9 de Cergy-Pontoise, Cergy-Pontoise, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maillot", 
        "givenName": "Bertrand", 
        "id": "sg:person.011444247762.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444247762.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2008jb005986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003052890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jb005986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003052890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.sp.2006.253.01.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005614601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007763447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2007.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007951233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(72)90088-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012328049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(72)90088-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012328049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cnm.1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015182722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020396527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb089ib12p10125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030152369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb091ib01p00793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030597512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jb005717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030748329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2006.06.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034753924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036511317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jb002199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042373707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.1610130304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.1610130304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2006.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048456446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3066-0_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051959279", 
          "https://doi.org/10.1007/978-94-011-3066-0_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3066-0_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051959279", 
          "https://doi.org/10.1007/978-94-011-3066-0_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(80)90055-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052235226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(80)90055-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052235226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(95)00868-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053438661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2475/ajs.283.7.684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070841747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898718829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511614958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666193"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "The objective is to capture the 3D spatial variation in the failure mode occurring in accretionary wedges and their analog experiments in the laboratory from the sole knowledge of the material strength and the structure geometry. The proposed methodology relies on the maximum strength theorem which is inherited from the kinematic approach of the classical limit analysis. It selects the optimum virtual velocity field which minimizes the tectonic force. These velocity fields are constructed by interpolation thanks to the spatial discretization conducted with ten-noded tetrahedra in 3D and six-noded triangles in 2D. The resulting, discrete optimization problem is first presented emphasizing the dual formalism found most appropriate in the presence of nonlinear strength criteria, such as the Drucker\u2013Prager criterion used in all reported examples. The numerical scheme is first applied to a perfectly triangular 2D wedge. It is known that failure occurs to the back for topographic slope smaller than and to the front for slope larger than a critical slope, defining subcritical and supercritical slope stability conditions, respectively. The failure mode is characterized by the activation of a ramp, its conjugate back thrust, and the partial or complete activation of the d\u00e9collement. It is shown that the critical slope is captured precisely by the proposed numerical scheme, the ramp, and the back thrust corresponding to regions of localized virtual strain. The influence of the back-wall friction on this critical slope is explored. It is found that the failure mechanism reduces to a thrust rooting at the base of the back wall and the absence of back thrust, for small enough values of the friction angle. This influence is well explained by the Mohr construction and further validated with experimental results with sand, considered as an analog material. 3D applications of the same methodology are presented in a companion paper.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10596-010-9184-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1270275", 
        "issn": [
          "1420-0597", 
          "1573-1499"
        ], 
        "name": "Computational Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation", 
    "pagination": "793-811", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b98c01a279bfe7468084e767ccc67a3b98cc1aca21e51e4f59d6c6e6d42081f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10596-010-9184-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038951965"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10596-010-9184-4", 
      "https://app.dimensions.ai/details/publication/pub.1038951965"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10596-010-9184-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10596-010-9184-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10596-010-9184-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10596-010-9184-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10596-010-9184-4'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10596-010-9184-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na9d12713067d48648ef5d094f90371d7
4 schema:citation sg:pub.10.1007/978-94-011-3066-0_11
5 https://doi.org/10.1002/cnm.1018
6 https://doi.org/10.1002/nag.1610130304
7 https://doi.org/10.1002/nag.198
8 https://doi.org/10.1002/nme.1314
9 https://doi.org/10.1002/nme.551
10 https://doi.org/10.1016/0020-7683(72)90088-1
11 https://doi.org/10.1016/0045-7825(80)90055-9
12 https://doi.org/10.1016/0045-7825(95)00868-1
13 https://doi.org/10.1016/j.engfracmech.2007.07.008
14 https://doi.org/10.1016/j.ijsolstr.2006.06.036
15 https://doi.org/10.1016/j.jmps.2006.04.004
16 https://doi.org/10.1017/cbo9780511614958
17 https://doi.org/10.1029/2002jb002199
18 https://doi.org/10.1029/2008jb005717
19 https://doi.org/10.1029/2008jb005986
20 https://doi.org/10.1029/jb089ib12p10125
21 https://doi.org/10.1029/jb091ib01p00793
22 https://doi.org/10.1137/1.9780898718829
23 https://doi.org/10.1144/gsl.sp.2006.253.01.01
24 https://doi.org/10.2475/ajs.283.7.684
25 schema:datePublished 2010-09
26 schema:datePublishedReg 2010-09-01
27 schema:description The objective is to capture the 3D spatial variation in the failure mode occurring in accretionary wedges and their analog experiments in the laboratory from the sole knowledge of the material strength and the structure geometry. The proposed methodology relies on the maximum strength theorem which is inherited from the kinematic approach of the classical limit analysis. It selects the optimum virtual velocity field which minimizes the tectonic force. These velocity fields are constructed by interpolation thanks to the spatial discretization conducted with ten-noded tetrahedra in 3D and six-noded triangles in 2D. The resulting, discrete optimization problem is first presented emphasizing the dual formalism found most appropriate in the presence of nonlinear strength criteria, such as the Drucker–Prager criterion used in all reported examples. The numerical scheme is first applied to a perfectly triangular 2D wedge. It is known that failure occurs to the back for topographic slope smaller than and to the front for slope larger than a critical slope, defining subcritical and supercritical slope stability conditions, respectively. The failure mode is characterized by the activation of a ramp, its conjugate back thrust, and the partial or complete activation of the décollement. It is shown that the critical slope is captured precisely by the proposed numerical scheme, the ramp, and the back thrust corresponding to regions of localized virtual strain. The influence of the back-wall friction on this critical slope is explored. It is found that the failure mechanism reduces to a thrust rooting at the base of the back wall and the absence of back thrust, for small enough values of the friction angle. This influence is well explained by the Mohr construction and further validated with experimental results with sand, considered as an analog material. 3D applications of the same methodology are presented in a companion paper.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N41dcf04375e449e5920265e8009aa4c7
32 Ned7d9852446545588d36c1c50d60ad21
33 sg:journal.1270275
34 schema:name Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation
35 schema:pagination 793-811
36 schema:productId N08ee5306c2134af49c37c74d5b952130
37 N20566ca9548549ee9e16a474e8a2396d
38 Nb0def3bd193a4f789dcb9e59ad68c580
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038951965
40 https://doi.org/10.1007/s10596-010-9184-4
41 schema:sdDatePublished 2019-04-11T10:21
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Neba0c8d6141b40458ee91152b805c4e6
44 schema:url http://link.springer.com/10.1007%2Fs10596-010-9184-4
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N08ee5306c2134af49c37c74d5b952130 schema:name doi
49 schema:value 10.1007/s10596-010-9184-4
50 rdf:type schema:PropertyValue
51 N20566ca9548549ee9e16a474e8a2396d schema:name readcube_id
52 schema:value b98c01a279bfe7468084e767ccc67a3b98cc1aca21e51e4f59d6c6e6d42081f7
53 rdf:type schema:PropertyValue
54 N2913fe72756a48f0974e3b86686b2063 rdf:first sg:person.011444247762.18
55 rdf:rest rdf:nil
56 N350f5f4a4c8040bab3c2bb3b9b2b7f7e rdf:first sg:person.01360010723.82
57 rdf:rest N2913fe72756a48f0974e3b86686b2063
58 N41dcf04375e449e5920265e8009aa4c7 schema:volumeNumber 14
59 rdf:type schema:PublicationVolume
60 Na9d12713067d48648ef5d094f90371d7 rdf:first sg:person.07773443043.23
61 rdf:rest Nca350143358a4af582204746e71c413e
62 Nb0def3bd193a4f789dcb9e59ad68c580 schema:name dimensions_id
63 schema:value pub.1038951965
64 rdf:type schema:PropertyValue
65 Nca350143358a4af582204746e71c413e rdf:first sg:person.01310716602.83
66 rdf:rest N350f5f4a4c8040bab3c2bb3b9b2b7f7e
67 Neba0c8d6141b40458ee91152b805c4e6 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Ned7d9852446545588d36c1c50d60ad21 schema:issueNumber 4
70 rdf:type schema:PublicationIssue
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
75 schema:name Interdisciplinary Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1270275 schema:issn 1420-0597
78 1573-1499
79 schema:name Computational Geosciences
80 rdf:type schema:Periodical
81 sg:person.011444247762.18 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
82 schema:familyName Maillot
83 schema:givenName Bertrand
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444247762.18
85 rdf:type schema:Person
86 sg:person.01310716602.83 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
87 schema:familyName Krabbenhøft
88 schema:givenName Kristian
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310716602.83
90 rdf:type schema:Person
91 sg:person.01360010723.82 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
92 schema:familyName Leroy
93 schema:givenName Yves M.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360010723.82
95 rdf:type schema:Person
96 sg:person.07773443043.23 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
97 schema:familyName Souloumiac
98 schema:givenName Pauline
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07773443043.23
100 rdf:type schema:Person
101 sg:pub.10.1007/978-94-011-3066-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051959279
102 https://doi.org/10.1007/978-94-011-3066-0_11
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/cnm.1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015182722
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/nag.1610130304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047328829
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/nag.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020396527
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/nme.1314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007763447
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/nme.551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036511317
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0020-7683(72)90088-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012328049
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0045-7825(80)90055-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052235226
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0045-7825(95)00868-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053438661
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.engfracmech.2007.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007951233
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ijsolstr.2006.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034753924
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jmps.2006.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048456446
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/cbo9780511614958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666193
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/2002jb002199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042373707
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/2008jb005717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030748329
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1029/2008jb005986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003052890
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1029/jb089ib12p10125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030152369
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1029/jb091ib01p00793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030597512
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/1.9780898718829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555827
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1144/gsl.sp.2006.253.01.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005614601
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2475/ajs.283.7.684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070841747
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.266842.c schema:alternateName University of Newcastle Australia
145 schema:name Centre for Geotechnical and Materials Modelling, University of Newcastle, 2308, Callaghan, NSW, Australia
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
148 schema:name Laboratoire MSS-Mat, CNRS, Ecole Centrale Paris, Chatenay Malabry, France
149 Laboratoire de Géologie, CNRS, École Normale Supérieure, Paris, France
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
152 schema:name Département Géosciences et Environnement, Université de Cergy-Pontoise, Cergy-Pontoise, France
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...