Effect of the landscape matrix on gene flow in a coastal amphibian metapopulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-09

AUTHORS

K. Cox, J. Maes, H. Van Calster, J. Mergeay

ABSTRACT

Functional connectivity is crucial for the persistence of a metapopulation, because migration among subpopulations enables recolonization and counteracts genetic drift, which is especially important in small subpopulations. We studied the degree and drivers of connectivity among occupied patches of a coastal dune metapopulation of the Natterjack Toad (Epidalea calamita Laurenti), on the basis of microsatellite variation. As spatial landscape heterogeneity is expected to influence dispersal and genetic structure, we analyzed which landscape features affect functional connectivity and to what extent. Sixty different landscape resistance scenarios as well as the isolation-by-distance model were compared using two landscape genetics approaches. We identified three subpopulations with unidirectional levels of gene flow among the two most geographically separated subpopulations, while inferred gene flow into the geographically intermediate subpopulation was limited. Urbanization and vegetation height negatively affected connectivity. Low estimates of genetic diversity and effective population size indicate that conservation measures in the smallest and most isolated subpopulation are required. More... »

PAGES

1359-1375

References to SciGraph publications

  • 2009-02-25. Identifying future research needs in landscape genetics: where to from here? in LANDSCAPE ECOLOGY
  • 2006-04-14. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci in CONSERVATION GENETICS
  • 2008-04-30. Revealing cryptic spatial patterns in genetic variability by a new multivariate method in HEREDITY
  • 2004-12. Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita) in LANDSCAPE ECOLOGY
  • 2006-08-03. Quantifying functional connectivity: experimental assessment of boundary permeability for the natterjack toad (Bufo calamita) in OECOLOGIA
  • 2000-04. Quantitative evidence for global amphibian population declines in NATURE
  • 2010-02-02. Applications of landscape genetics in conservation biology: concepts and challenges in CONSERVATION GENETICS
  • 2009-09-16. Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach in CONSERVATION GENETICS
  • 2013-02-08. Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest in CONSERVATION GENETICS
  • 2006-11-01. Putting the ‘landscape’ in landscape genetics in HEREDITY
  • 2009-01-16. Recent introduction or ancient ancestry? Use of genetic evidence to investigate the origins of range edge populations in natterjack toads (Bufo calamita) in CONSERVATION GENETICS
  • 2006-01. Widespread amphibian extinctions from epidemic disease driven by global warming in NATURE
  • 2012-08-12. Landscape genetics and limiting factors in CONSERVATION GENETICS
  • 2000-12. A further four polymorphic microsatellite loci in the natterjack toad Bufo calamita in CONSERVATION GENETICS
  • 2002-09. Confidence limits for regression relationships between distance matrices: Estimating gene flow with distance in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10592-017-0985-z

    DOI

    http://dx.doi.org/10.1007/s10592-017-0985-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085933166


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0501", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecological Applications", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.435417.0", 
              "name": [
                "Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cox", 
            "givenName": "K.", 
            "id": "sg:person.01156373520.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373520.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5284.b", 
              "name": [
                "Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maes", 
            "givenName": "J.", 
            "id": "sg:person.011343224330.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011343224330.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Institute for Nature and Forest, Kliniekstraat 25, 1070, Brussels, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.435417.0", 
              "name": [
                "Research Institute for Nature and Forest, Kliniekstraat 25, 1070, Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Calster", 
            "givenName": "H.", 
            "id": "sg:person.010252302775.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252302775.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.435417.0", 
              "name": [
                "Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mergeay", 
            "givenName": "J.", 
            "id": "sg:person.01170123130.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170123130.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10592-006-9134-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045419090", 
              "https://doi.org/10.1007/s10592-006-9134-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-012-0396-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050734134", 
              "https://doi.org/10.1007/s10592-012-0396-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-013-0454-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028427127", 
              "https://doi.org/10.1007/s10592-013-0454-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10980-009-9334-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018734860", 
              "https://doi.org/10.1007/s10980-009-9334-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-009-9985-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020786199", 
              "https://doi.org/10.1007/s10592-009-9985-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-009-0044-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049948721", 
              "https://doi.org/10.1007/s10592-009-0044-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2008.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003142209", 
              "https://doi.org/10.1038/hdy.2008.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026816497", 
              "https://doi.org/10.1038/nature04246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35008052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004587727", 
              "https://doi.org/10.1038/35008052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10980-004-0166-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039713042", 
              "https://doi.org/10.1007/s10980-004-0166-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1198/108571102320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041965111", 
              "https://doi.org/10.1198/108571102320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.hdy.6800917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038609553", 
              "https://doi.org/10.1038/sj.hdy.6800917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-009-9805-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030948990", 
              "https://doi.org/10.1007/s10592-009-9805-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-006-0500-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004044808", 
              "https://doi.org/10.1007/s00442-006-0500-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011567502714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017143483", 
              "https://doi.org/10.1023/a:1011567502714"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-09", 
        "datePublishedReg": "2017-06-09", 
        "description": "Functional connectivity is crucial for the persistence of a metapopulation, because migration among subpopulations enables recolonization and counteracts genetic drift, which is especially important in small subpopulations. We studied the degree and drivers of connectivity among occupied patches of a coastal dune metapopulation of the Natterjack Toad (Epidalea calamita Laurenti), on the basis of microsatellite variation. As spatial landscape heterogeneity is expected to influence dispersal and genetic structure, we analyzed which landscape features affect functional connectivity and to what extent. Sixty different landscape resistance scenarios as well as the isolation-by-distance model were compared using two landscape genetics approaches. We identified three subpopulations with unidirectional levels of gene flow among the two most geographically separated subpopulations, while inferred gene flow into the geographically intermediate subpopulation was limited. Urbanization and vegetation height negatively affected connectivity. Low estimates of genetic diversity and effective population size indicate that conservation measures in the smallest and most isolated subpopulation are required.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10592-017-0985-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1027172", 
            "issn": [
              "1566-0621", 
              "1572-9737"
            ], 
            "name": "Conservation Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "gene flow", 
          "spatial landscape heterogeneity", 
          "landscape genetics approach", 
          "inferred gene flow", 
          "effective population size", 
          "landscape matrix", 
          "amphibian metapopulations", 
          "landscape heterogeneity", 
          "conservation measures", 
          "occupied patches", 
          "landscape features", 
          "vegetation height", 
          "natterjack toad", 
          "genetic structure", 
          "resistance scenarios", 
          "genetic diversity", 
          "population size", 
          "metapopulation", 
          "microsatellite variation", 
          "genetic drift", 
          "distance model", 
          "genetic approaches", 
          "connectivity", 
          "intermediate subpopulation", 
          "functional connectivity", 
          "lower estimates", 
          "recolonization", 
          "small subpopulation", 
          "urbanization", 
          "toads", 
          "diversity", 
          "patches", 
          "drivers", 
          "persistence", 
          "subpopulations", 
          "heterogeneity", 
          "scenarios", 
          "isolation", 
          "variation", 
          "migration", 
          "flow", 
          "extent", 
          "estimates", 
          "drift", 
          "height", 
          "measures", 
          "basis", 
          "effect", 
          "levels", 
          "degree", 
          "size", 
          "structure", 
          "approach", 
          "model", 
          "matrix", 
          "features", 
          "drivers of connectivity", 
          "coastal dune metapopulation", 
          "dune metapopulation", 
          "different landscape resistance scenarios", 
          "landscape resistance scenarios", 
          "unidirectional levels", 
          "coastal amphibian metapopulation"
        ], 
        "name": "Effect of the landscape matrix on gene flow in a coastal amphibian metapopulation", 
        "pagination": "1359-1375", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085933166"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10592-017-0985-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10592-017-0985-z", 
          "https://app.dimensions.ai/details/publication/pub.1085933166"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_735.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10592-017-0985-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10592-017-0985-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10592-017-0985-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10592-017-0985-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10592-017-0985-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      22 PREDICATES      106 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10592-017-0985-z schema:about anzsrc-for:05
    2 anzsrc-for:0501
    3 anzsrc-for:0502
    4 anzsrc-for:06
    5 anzsrc-for:0604
    6 schema:author Nb2daf33da5fc413bb00655687193d6c9
    7 schema:citation sg:pub.10.1007/s00442-006-0500-6
    8 sg:pub.10.1007/s10592-006-9134-9
    9 sg:pub.10.1007/s10592-009-0044-5
    10 sg:pub.10.1007/s10592-009-9805-4
    11 sg:pub.10.1007/s10592-009-9985-y
    12 sg:pub.10.1007/s10592-012-0396-0
    13 sg:pub.10.1007/s10592-013-0454-2
    14 sg:pub.10.1007/s10980-004-0166-6
    15 sg:pub.10.1007/s10980-009-9334-z
    16 sg:pub.10.1023/a:1011567502714
    17 sg:pub.10.1038/35008052
    18 sg:pub.10.1038/hdy.2008.34
    19 sg:pub.10.1038/nature04246
    20 sg:pub.10.1038/sj.hdy.6800917
    21 sg:pub.10.1198/108571102320
    22 schema:datePublished 2017-06-09
    23 schema:datePublishedReg 2017-06-09
    24 schema:description Functional connectivity is crucial for the persistence of a metapopulation, because migration among subpopulations enables recolonization and counteracts genetic drift, which is especially important in small subpopulations. We studied the degree and drivers of connectivity among occupied patches of a coastal dune metapopulation of the Natterjack Toad (Epidalea calamita Laurenti), on the basis of microsatellite variation. As spatial landscape heterogeneity is expected to influence dispersal and genetic structure, we analyzed which landscape features affect functional connectivity and to what extent. Sixty different landscape resistance scenarios as well as the isolation-by-distance model were compared using two landscape genetics approaches. We identified three subpopulations with unidirectional levels of gene flow among the two most geographically separated subpopulations, while inferred gene flow into the geographically intermediate subpopulation was limited. Urbanization and vegetation height negatively affected connectivity. Low estimates of genetic diversity and effective population size indicate that conservation measures in the smallest and most isolated subpopulation are required.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf Ne332d8869f8743a2a954b8b7b035dc61
    29 Nf87d7939fbb74138aecd235fa47ec6f7
    30 sg:journal.1027172
    31 schema:keywords amphibian metapopulations
    32 approach
    33 basis
    34 coastal amphibian metapopulation
    35 coastal dune metapopulation
    36 connectivity
    37 conservation measures
    38 degree
    39 different landscape resistance scenarios
    40 distance model
    41 diversity
    42 drift
    43 drivers
    44 drivers of connectivity
    45 dune metapopulation
    46 effect
    47 effective population size
    48 estimates
    49 extent
    50 features
    51 flow
    52 functional connectivity
    53 gene flow
    54 genetic approaches
    55 genetic diversity
    56 genetic drift
    57 genetic structure
    58 height
    59 heterogeneity
    60 inferred gene flow
    61 intermediate subpopulation
    62 isolation
    63 landscape features
    64 landscape genetics approach
    65 landscape heterogeneity
    66 landscape matrix
    67 landscape resistance scenarios
    68 levels
    69 lower estimates
    70 matrix
    71 measures
    72 metapopulation
    73 microsatellite variation
    74 migration
    75 model
    76 natterjack toad
    77 occupied patches
    78 patches
    79 persistence
    80 population size
    81 recolonization
    82 resistance scenarios
    83 scenarios
    84 size
    85 small subpopulation
    86 spatial landscape heterogeneity
    87 structure
    88 subpopulations
    89 toads
    90 unidirectional levels
    91 urbanization
    92 variation
    93 vegetation height
    94 schema:name Effect of the landscape matrix on gene flow in a coastal amphibian metapopulation
    95 schema:pagination 1359-1375
    96 schema:productId N72874c31857e40f4af724af10002361d
    97 Nb8ed94d2187f4955bd8f3b8f028abe79
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085933166
    99 https://doi.org/10.1007/s10592-017-0985-z
    100 schema:sdDatePublished 2021-11-01T18:28
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N5d44e2ee68bf4c90b824e136c47b5e3c
    103 schema:url https://doi.org/10.1007/s10592-017-0985-z
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N07f8646ca726415ab816091c2f2c4d2b rdf:first sg:person.010252302775.71
    108 rdf:rest N7ccd3fb1980047fb9d7b73b992742332
    109 N1a22ddb983124799ad417fe42b678858 rdf:first sg:person.011343224330.39
    110 rdf:rest N07f8646ca726415ab816091c2f2c4d2b
    111 N5d44e2ee68bf4c90b824e136c47b5e3c schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 N72874c31857e40f4af724af10002361d schema:name doi
    114 schema:value 10.1007/s10592-017-0985-z
    115 rdf:type schema:PropertyValue
    116 N7ccd3fb1980047fb9d7b73b992742332 rdf:first sg:person.01170123130.04
    117 rdf:rest rdf:nil
    118 Nb2daf33da5fc413bb00655687193d6c9 rdf:first sg:person.01156373520.11
    119 rdf:rest N1a22ddb983124799ad417fe42b678858
    120 Nb8ed94d2187f4955bd8f3b8f028abe79 schema:name dimensions_id
    121 schema:value pub.1085933166
    122 rdf:type schema:PropertyValue
    123 Ne332d8869f8743a2a954b8b7b035dc61 schema:issueNumber 6
    124 rdf:type schema:PublicationIssue
    125 Nf87d7939fbb74138aecd235fa47ec6f7 schema:volumeNumber 18
    126 rdf:type schema:PublicationVolume
    127 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Environmental Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0501 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Ecological Applications
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Environmental Science and Management
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Biological Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Genetics
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1027172 schema:issn 1566-0621
    143 1572-9737
    144 schema:name Conservation Genetics
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.010252302775.71 schema:affiliation grid-institutes:grid.435417.0
    148 schema:familyName Van Calster
    149 schema:givenName H.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252302775.71
    151 rdf:type schema:Person
    152 sg:person.011343224330.39 schema:affiliation grid-institutes:grid.5284.b
    153 schema:familyName Maes
    154 schema:givenName J.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011343224330.39
    156 rdf:type schema:Person
    157 sg:person.01156373520.11 schema:affiliation grid-institutes:grid.435417.0
    158 schema:familyName Cox
    159 schema:givenName K.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373520.11
    161 rdf:type schema:Person
    162 sg:person.01170123130.04 schema:affiliation grid-institutes:grid.435417.0
    163 schema:familyName Mergeay
    164 schema:givenName J.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170123130.04
    166 rdf:type schema:Person
    167 sg:pub.10.1007/s00442-006-0500-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004044808
    168 https://doi.org/10.1007/s00442-006-0500-6
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10592-006-9134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045419090
    171 https://doi.org/10.1007/s10592-006-9134-9
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s10592-009-0044-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049948721
    174 https://doi.org/10.1007/s10592-009-0044-5
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s10592-009-9805-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030948990
    177 https://doi.org/10.1007/s10592-009-9805-4
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10592-009-9985-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020786199
    180 https://doi.org/10.1007/s10592-009-9985-y
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s10592-012-0396-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050734134
    183 https://doi.org/10.1007/s10592-012-0396-0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s10592-013-0454-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028427127
    186 https://doi.org/10.1007/s10592-013-0454-2
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s10980-004-0166-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039713042
    189 https://doi.org/10.1007/s10980-004-0166-6
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10980-009-9334-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018734860
    192 https://doi.org/10.1007/s10980-009-9334-z
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1023/a:1011567502714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017143483
    195 https://doi.org/10.1023/a:1011567502714
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/35008052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004587727
    198 https://doi.org/10.1038/35008052
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/hdy.2008.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003142209
    201 https://doi.org/10.1038/hdy.2008.34
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature04246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026816497
    204 https://doi.org/10.1038/nature04246
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/sj.hdy.6800917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038609553
    207 https://doi.org/10.1038/sj.hdy.6800917
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1198/108571102320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041965111
    210 https://doi.org/10.1198/108571102320
    211 rdf:type schema:CreativeWork
    212 grid-institutes:grid.435417.0 schema:alternateName Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium
    213 Research Institute for Nature and Forest, Kliniekstraat 25, 1070, Brussels, Belgium
    214 schema:name Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium
    215 Research Institute for Nature and Forest, Kliniekstraat 25, 1070, Brussels, Belgium
    216 rdf:type schema:Organization
    217 grid-institutes:grid.5284.b schema:alternateName Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
    218 schema:name Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...