Ontology type: schema:ScholarlyArticle Open Access: True
2018-12
AUTHORSM. V. Dolgopolik
ABSTRACTThis paper is devoted to a detailed convergence analysis of the method of codifferential descent (MCD) developed by professor V.F. Demyanov for solving a large class of nonsmooth nonconvex optimization problems. We propose a generalization of the MCD that is more suitable for applications than the original method, and that utilizes only a part of a codifferential on every iteration, which allows one to reduce the overall complexity of the method. With the use of some general results on uniformly codifferentiable functions obtained in this paper, we prove the global convergence of the generalized MCD in the infinite dimensional case. Also, we propose and analyse a quadratic regularization of the MCD, which is the first general method for minimizing a codifferentiable function over a convex set. Apart from convergence analysis, we also discuss the robustness of the MCD with respect to computational errors, possible step size rules, and a choice of parameters of the algorithm. In the end of the paper we estimate the rate of convergence of the MCD for a class of nonsmooth nonconvex functions that arise, in particular, in cluster analysis. We prove that under some general assumptions the method converges with linear rate, and it convergence quadratically, provided a certain first order sufficient optimality condition holds true. More... »
PAGES1-35
http://scigraph.springernature.com/pub.10.1007/s10589-018-0024-0
DOIhttp://dx.doi.org/10.1007/s10589-018-0024-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1105830438
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Problems of Mechanical Engineering",
"id": "https://www.grid.ac/institutes/grid.462405.1",
"name": [
"Saint Petersburg State University, Saint Petersburg, Russia",
"Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Dolgopolik",
"givenName": "M. V.",
"type": "Person"
}
],
"citation": [
{
"id": "https://app.dimensions.ai/details/publication/pub.1001774846",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4615-4113-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001774846",
"https://doi.org/10.1007/978-1-4615-4113-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4615-4113-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001774846",
"https://doi.org/10.1007/978-1-4615-4113-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01584544",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001866556",
"https://doi.org/10.1007/bf01584544"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01584544",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001866556",
"https://doi.org/10.1007/bf01584544"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10556780290027828",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002327785"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10589-013-9547-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005050363",
"https://doi.org/10.1007/s10589-013-9547-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10556788.2010.526116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006075580"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.3103/s1066369x12120043",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007209325",
"https://doi.org/10.3103/s1066369x12120043"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-006-0728-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009500410",
"https://doi.org/10.1007/s10107-006-0728-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-006-0728-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009500410",
"https://doi.org/10.1007/s10107-006-0728-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-51682-5_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010960085",
"https://doi.org/10.1007/978-3-642-51682-5_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-46631-1_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013935206",
"https://doi.org/10.1007/978-3-642-46631-1_3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0041-5553(81)90031-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015483810"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-6019-4_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018434308",
"https://doi.org/10.1007/978-1-4757-6019-4_6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331930902943483",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019123081"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331938608843131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019756461"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01189901",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020617396",
"https://doi.org/10.1007/bf01189901"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cam.2013.08.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021877069"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-012-0514-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022763272",
"https://doi.org/10.1007/s10107-012-0514-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331934.2013.840625",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024670082"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1026756433",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-02796-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026756433",
"https://doi.org/10.1007/978-3-662-02796-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-02796-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026756433",
"https://doi.org/10.1007/978-3-662-02796-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10556780290027837",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027345027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3137-8_14",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027651812",
"https://doi.org/10.1007/978-1-4757-3137-8_14"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1029389749",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-9920-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029389749",
"https://doi.org/10.1007/978-94-015-9920-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-9920-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029389749",
"https://doi.org/10.1007/978-94-015-9920-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1021854116784",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029894598",
"https://doi.org/10.1023/a:1021854116784"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1020570126636",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030732939",
"https://doi.org/10.1023/a:1020570126636"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3137-8_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032487502",
"https://doi.org/10.1007/978-1-4757-3137-8_2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331934.2013.869811",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032608780"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10898-010-9569-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035348266",
"https://doi.org/10.1007/s10898-010-9569-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331939108843708",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036017163"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10957-007-9335-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036150122",
"https://doi.org/10.1007/s10957-007-9335-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331939108843697",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036629616"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10556788.2012.714781",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036718976"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10958-011-0259-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036759296",
"https://doi.org/10.1007/s10958-011-0259-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331934.2010.534166",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046130635"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1014075113874",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048199048",
"https://doi.org/10.1023/a:1014075113874"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-4538-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048511240",
"https://doi.org/10.1007/978-1-4614-4538-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-4538-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048511240",
"https://doi.org/10.1007/978-1-4614-4538-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331930500096171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050448979"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331930500096171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050448979"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01630563.2014.922097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050598754"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/cocv/2014010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056951998"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/030601296",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062842754"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/090748408",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062855965"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/090754595",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062856181"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10556788.2017.1378652",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092078264"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11590-017-1222-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093058938",
"https://doi.org/10.1007/s11590-017-1222-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1.9780898718768",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098556221"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-12",
"datePublishedReg": "2018-12-01",
"description": "This paper is devoted to a detailed convergence analysis of the method of codifferential descent (MCD) developed by professor V.F. Demyanov for solving a large class of nonsmooth nonconvex optimization problems. We propose a generalization of the MCD that is more suitable for applications than the original method, and that utilizes only a part of a codifferential on every iteration, which allows one to reduce the overall complexity of the method. With the use of some general results on uniformly codifferentiable functions obtained in this paper, we prove the global convergence of the generalized MCD in the infinite dimensional case. Also, we propose and analyse a quadratic regularization of the MCD, which is the first general method for minimizing a codifferentiable function over a convex set. Apart from convergence analysis, we also discuss the robustness of the MCD with respect to computational errors, possible step size rules, and a choice of parameters of the algorithm. In the end of the paper we estimate the rate of convergence of the MCD for a class of nonsmooth nonconvex functions that arise, in particular, in cluster analysis. We prove that under some general assumptions the method converges with linear rate, and it convergence quadratically, provided a certain first order sufficient optimality condition holds true.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10589-018-0024-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1042206",
"issn": [
"0926-6003",
"1573-2894"
],
"name": "Computational Optimization and Applications",
"type": "Periodical"
}
],
"name": "A convergence analysis of the method of codifferential descent",
"pagination": "1-35",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"db33a4ad86c56ddac322a16dc18fd7ec9edd43aa5c68adfd46325ede3e96db6f"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10589-018-0024-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1105830438"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10589-018-0024-0",
"https://app.dimensions.ai/details/publication/pub.1105830438"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T01:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000485.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s10589-018-0024-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-0024-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-0024-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-0024-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-0024-0'
This table displays all metadata directly associated to this object as RDF triples.
212 TRIPLES
21 PREDICATES
71 URIs
17 LITERALS
5 BLANK NODES