A framework for parallel second order incremental optimization algorithms for solving partially separable problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Kamer Kaya, Figen Öztoprak, Ş. İlker Birbil, A. Taylan Cemgil, Umut Şimşekli, Nurdan Kuru, Hazal Koptagel, M. Kaan Öztürk

ABSTRACT

We propose Hessian Approximated Multiple Subsets Iteration (HAMSI), which is a generic second order incremental algorithm for solving large-scale partially separable convex and nonconvex optimization problems. The algorithm is based on a local quadratic approximation, and hence, allows incorporating curvature information to speed-up the convergence. HAMSI is inherently parallel and it scales nicely with the number of processors. We prove the convergence properties of our algorithm when the subset selection step is deterministic. Combined with techniques for effectively utilizing modern parallel computer architectures, we illustrate that a particular implementation of the proposed method based on L-BFGS updates converges more rapidly than a parallel gradient descent when both methods are used to solve large-scale matrix factorization problems. This performance gain comes only at the expense of using memory that scales linearly with the total size of the optimization variables. We conclude that HAMSI may be considered as a viable alternative in many large scale problems, where first order methods based on variants of gradient descent are applicable. More... »

PAGES

1-31

References to SciGraph publications

  • 2002-08-20. Parallel Distance-k Coloring Algorithms for Numerical Optimization in EURO-PAR 2002 PARALLEL PROCESSING
  • 1994-01. Representations of quasi-Newton matrices and their use in limited memory methods in MATHEMATICAL PROGRAMMING
  • 2008. A Unified View of Matrix Factorization Models in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2016-03. Parallel coordinate descent methods for big data optimization in MATHEMATICAL PROGRAMMING
  • 2015. Distributed Block Coordinate Descent for Minimizing Partially Separable Functions in NUMERICAL ANALYSIS AND OPTIMIZATION
  • 2015-06. A globally convergent incremental Newton method in MATHEMATICAL PROGRAMMING
  • 1998-10. Incremental Gradient Algorithms with Stepsizes Bounded Away from Zero in COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10589-018-00057-7

    DOI

    http://dx.doi.org/10.1007/s10589-018-00057-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111057779


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sabanc\u0131 University", 
              "id": "https://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaya", 
            "givenName": "Kamer", 
            "id": "sg:person.010527616213.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527616213.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istanbul Bilgi University", 
              "id": "https://www.grid.ac/institutes/grid.24956.3c", 
              "name": [
                "Department of Industrial Engineering, Istanbul Bilgi University, 34060, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00d6ztoprak", 
            "givenName": "Figen", 
            "id": "sg:person.012031047471.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031047471.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Erasmus University Rotterdam", 
              "id": "https://www.grid.ac/institutes/grid.6906.9", 
              "name": [
                "Econometric Institute, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Birbil", 
            "givenName": "\u015e. \u0130lker", 
            "id": "sg:person.012362343415.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362343415.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bo\u011fazi\u00e7i University", 
              "id": "https://www.grid.ac/institutes/grid.11220.30", 
              "name": [
                "Department of Computer Engineering, Bo\u011fazi\u00e7i University, 34342, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cemgil", 
            "givenName": "A. Taylan", 
            "id": "sg:person.07452455501.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452455501.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "LTCI, T\u00e9l\u00e9com ParisTech, Universit\u00e9 Paris-Saclay, 75013, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u015eim\u015fekli", 
            "givenName": "Umut", 
            "id": "sg:person.012455163355.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012455163355.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sabanc\u0131 University", 
              "id": "https://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuru", 
            "givenName": "Nurdan", 
            "id": "sg:person.011057334373.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057334373.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bo\u011fazi\u00e7i University", 
              "id": "https://www.grid.ac/institutes/grid.11220.30", 
              "name": [
                "Department of Computer Engineering, Bo\u011fazi\u00e7i University, 34342, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koptagel", 
            "givenName": "Hazal", 
            "id": "sg:person.010635702614.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010635702614.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sabanc\u0131 University", 
              "id": "https://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00d6zt\u00fcrk", 
            "givenName": "M. Kaan", 
            "id": "sg:person.014525464031.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525464031.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-87481-2_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004334909", 
              "https://doi.org/10.1007/978-3-540-87481-2_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45706-2_130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009389502", 
              "https://doi.org/10.1007/3-540-45706-2_130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45706-2_130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009389502", 
              "https://doi.org/10.1007/3-540-45706-2_130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01582063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015080944", 
              "https://doi.org/10.1007/bf01582063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2513109.2513110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019275515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10556789408805581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020328597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-17689-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031182472", 
              "https://doi.org/10.1007/978-3-319-17689-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2827872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035328812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-015-0901-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036585276", 
              "https://doi.org/10.1007/s10107-015-0901-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-015-0901-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036585276", 
              "https://doi.org/10.1007/s10107-015-0901-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-015-0897-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037152635", 
              "https://doi.org/10.1007/s10107-015-0897-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2020408.2020426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050306021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018366000512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051810449", 
              "https://doi.org/10.1023/a:1018366000512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.910572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061101579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2013.2254478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061803781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2015.2399858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061804743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2015.2436357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061804915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/040615961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062845286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/080732158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062855036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/140954362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062871819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144504444711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144504444711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s1052623494268522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062883444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s1052623495294797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062883524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/15m1053141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085539430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2016.7798953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093994682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470747278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098662543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470747278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098662543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/17m1122943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104219897"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "We propose Hessian Approximated Multiple Subsets Iteration (HAMSI), which is a generic second order incremental algorithm for solving large-scale partially separable convex and nonconvex optimization problems. The algorithm is based on a local quadratic approximation, and hence, allows incorporating curvature information to speed-up the convergence. HAMSI is inherently parallel and it scales nicely with the number of processors. We prove the convergence properties of our algorithm when the subset selection step is deterministic. Combined with techniques for effectively utilizing modern parallel computer architectures, we illustrate that a particular implementation of the proposed method based on L-BFGS updates converges more rapidly than a parallel gradient descent when both methods are used to solve large-scale matrix factorization problems. This performance gain comes only at the expense of using memory that scales linearly with the total size of the optimization variables. We conclude that HAMSI may be considered as a viable alternative in many large scale problems, where first order methods based on variants of gradient descent are applicable.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10589-018-00057-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042206", 
            "issn": [
              "0926-6003", 
              "1573-2894"
            ], 
            "name": "Computational Optimization and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "72"
          }
        ], 
        "name": "A framework for parallel second order incremental optimization algorithms for solving partially separable problems", 
        "pagination": "1-31", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4e9a609caa6a818d77d341ab3250f38a31da70f643956769c6ad297d0ac1e9a7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10589-018-00057-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111057779"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10589-018-00057-7", 
          "https://app.dimensions.ai/details/publication/pub.1111057779"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10589-018-00057-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-00057-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-00057-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-00057-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-018-00057-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    203 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10589-018-00057-7 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N1113997b43ac46a2a49c4f9e36ce67b4
    4 schema:citation sg:pub.10.1007/3-540-45706-2_130
    5 sg:pub.10.1007/978-3-319-17689-5_11
    6 sg:pub.10.1007/978-3-540-87481-2_24
    7 sg:pub.10.1007/bf01582063
    8 sg:pub.10.1007/s10107-015-0897-y
    9 sg:pub.10.1007/s10107-015-0901-6
    10 sg:pub.10.1023/a:1018366000512
    11 https://doi.org/10.1002/9780470747278
    12 https://doi.org/10.1080/10556789408805581
    13 https://doi.org/10.1109/18.910572
    14 https://doi.org/10.1109/cdc.2016.7798953
    15 https://doi.org/10.1109/tsp.2013.2254478
    16 https://doi.org/10.1109/tsp.2015.2399858
    17 https://doi.org/10.1109/tsp.2015.2436357
    18 https://doi.org/10.1137/040615961
    19 https://doi.org/10.1137/080732158
    20 https://doi.org/10.1137/140954362
    21 https://doi.org/10.1137/15m1053141
    22 https://doi.org/10.1137/17m1122943
    23 https://doi.org/10.1137/s0036144504444711
    24 https://doi.org/10.1137/s1052623494268522
    25 https://doi.org/10.1137/s1052623495294797
    26 https://doi.org/10.1145/2020408.2020426
    27 https://doi.org/10.1145/2513109.2513110
    28 https://doi.org/10.1145/2827872
    29 schema:datePublished 2019-04
    30 schema:datePublishedReg 2019-04-01
    31 schema:description We propose Hessian Approximated Multiple Subsets Iteration (HAMSI), which is a generic second order incremental algorithm for solving large-scale partially separable convex and nonconvex optimization problems. The algorithm is based on a local quadratic approximation, and hence, allows incorporating curvature information to speed-up the convergence. HAMSI is inherently parallel and it scales nicely with the number of processors. We prove the convergence properties of our algorithm when the subset selection step is deterministic. Combined with techniques for effectively utilizing modern parallel computer architectures, we illustrate that a particular implementation of the proposed method based on L-BFGS updates converges more rapidly than a parallel gradient descent when both methods are used to solve large-scale matrix factorization problems. This performance gain comes only at the expense of using memory that scales linearly with the total size of the optimization variables. We conclude that HAMSI may be considered as a viable alternative in many large scale problems, where first order methods based on variants of gradient descent are applicable.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N36d5058c1db74d39b5519c4537a773e1
    36 N749b2786e78446618857c799c36cbd47
    37 sg:journal.1042206
    38 schema:name A framework for parallel second order incremental optimization algorithms for solving partially separable problems
    39 schema:pagination 1-31
    40 schema:productId N2616f956e2224897b3282a6d91c3c02d
    41 N3b2a23b500a1412b86cce6ccd0689537
    42 Ndc77d13fd55342d7aa69d314c2536f9d
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057779
    44 https://doi.org/10.1007/s10589-018-00057-7
    45 schema:sdDatePublished 2019-04-11T14:00
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nfd9de3c0a1f24928acd5f21f6a99d534
    48 schema:url https://link.springer.com/10.1007%2Fs10589-018-00057-7
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N1113997b43ac46a2a49c4f9e36ce67b4 rdf:first sg:person.010527616213.24
    53 rdf:rest N5c7ef0d2da694060ac2ed526f891b2d2
    54 N195bfb80175a455795e19a70b244b729 rdf:first sg:person.012362343415.20
    55 rdf:rest Nc32a0f74097047348bbd99afd3be33d1
    56 N1d353b9f0dd54e30944009cfb74f1280 rdf:first sg:person.014525464031.69
    57 rdf:rest rdf:nil
    58 N2616f956e2224897b3282a6d91c3c02d schema:name dimensions_id
    59 schema:value pub.1111057779
    60 rdf:type schema:PropertyValue
    61 N36d5058c1db74d39b5519c4537a773e1 schema:issueNumber 3
    62 rdf:type schema:PublicationIssue
    63 N3b2a23b500a1412b86cce6ccd0689537 schema:name readcube_id
    64 schema:value 4e9a609caa6a818d77d341ab3250f38a31da70f643956769c6ad297d0ac1e9a7
    65 rdf:type schema:PropertyValue
    66 N5c7ef0d2da694060ac2ed526f891b2d2 rdf:first sg:person.012031047471.74
    67 rdf:rest N195bfb80175a455795e19a70b244b729
    68 N62c60031d7bd4892ad994b5e7558d559 rdf:first sg:person.011057334373.53
    69 rdf:rest Ncafafed937104660b8371695168f57eb
    70 N63c831d705864c45a40cd5afa7ec383a schema:name LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France
    71 rdf:type schema:Organization
    72 N6b73d77a7cef4f4e84f92eda30c3de54 rdf:first sg:person.012455163355.99
    73 rdf:rest N62c60031d7bd4892ad994b5e7558d559
    74 N749b2786e78446618857c799c36cbd47 schema:volumeNumber 72
    75 rdf:type schema:PublicationVolume
    76 Nc32a0f74097047348bbd99afd3be33d1 rdf:first sg:person.07452455501.25
    77 rdf:rest N6b73d77a7cef4f4e84f92eda30c3de54
    78 Ncafafed937104660b8371695168f57eb rdf:first sg:person.010635702614.25
    79 rdf:rest N1d353b9f0dd54e30944009cfb74f1280
    80 Ndc77d13fd55342d7aa69d314c2536f9d schema:name doi
    81 schema:value 10.1007/s10589-018-00057-7
    82 rdf:type schema:PropertyValue
    83 Nfd9de3c0a1f24928acd5f21f6a99d534 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Numerical and Computational Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1042206 schema:issn 0926-6003
    92 1573-2894
    93 schema:name Computational Optimization and Applications
    94 rdf:type schema:Periodical
    95 sg:person.010527616213.24 schema:affiliation https://www.grid.ac/institutes/grid.5334.1
    96 schema:familyName Kaya
    97 schema:givenName Kamer
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527616213.24
    99 rdf:type schema:Person
    100 sg:person.010635702614.25 schema:affiliation https://www.grid.ac/institutes/grid.11220.30
    101 schema:familyName Koptagel
    102 schema:givenName Hazal
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010635702614.25
    104 rdf:type schema:Person
    105 sg:person.011057334373.53 schema:affiliation https://www.grid.ac/institutes/grid.5334.1
    106 schema:familyName Kuru
    107 schema:givenName Nurdan
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011057334373.53
    109 rdf:type schema:Person
    110 sg:person.012031047471.74 schema:affiliation https://www.grid.ac/institutes/grid.24956.3c
    111 schema:familyName Öztoprak
    112 schema:givenName Figen
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031047471.74
    114 rdf:type schema:Person
    115 sg:person.012362343415.20 schema:affiliation https://www.grid.ac/institutes/grid.6906.9
    116 schema:familyName Birbil
    117 schema:givenName Ş. İlker
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362343415.20
    119 rdf:type schema:Person
    120 sg:person.012455163355.99 schema:affiliation N63c831d705864c45a40cd5afa7ec383a
    121 schema:familyName Şimşekli
    122 schema:givenName Umut
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012455163355.99
    124 rdf:type schema:Person
    125 sg:person.014525464031.69 schema:affiliation https://www.grid.ac/institutes/grid.5334.1
    126 schema:familyName Öztürk
    127 schema:givenName M. Kaan
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525464031.69
    129 rdf:type schema:Person
    130 sg:person.07452455501.25 schema:affiliation https://www.grid.ac/institutes/grid.11220.30
    131 schema:familyName Cemgil
    132 schema:givenName A. Taylan
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452455501.25
    134 rdf:type schema:Person
    135 sg:pub.10.1007/3-540-45706-2_130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009389502
    136 https://doi.org/10.1007/3-540-45706-2_130
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-319-17689-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031182472
    139 https://doi.org/10.1007/978-3-319-17689-5_11
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-540-87481-2_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004334909
    142 https://doi.org/10.1007/978-3-540-87481-2_24
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf01582063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015080944
    145 https://doi.org/10.1007/bf01582063
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s10107-015-0897-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037152635
    148 https://doi.org/10.1007/s10107-015-0897-y
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s10107-015-0901-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036585276
    151 https://doi.org/10.1007/s10107-015-0901-6
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1023/a:1018366000512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051810449
    154 https://doi.org/10.1023/a:1018366000512
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1002/9780470747278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662543
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1080/10556789408805581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020328597
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/18.910572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101579
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/cdc.2016.7798953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093994682
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/tsp.2013.2254478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803781
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tsp.2015.2399858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804743
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tsp.2015.2436357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804915
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1137/040615961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845286
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1137/080732158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855036
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1137/140954362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871819
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1137/15m1053141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085539430
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1137/17m1122943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104219897
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1137/s0036144504444711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877847
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1137/s1052623494268522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883444
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1137/s1052623495294797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883524
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1145/2020408.2020426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050306021
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1145/2513109.2513110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019275515
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1145/2827872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035328812
    191 rdf:type schema:CreativeWork
    192 https://www.grid.ac/institutes/grid.11220.30 schema:alternateName Boğaziçi University
    193 schema:name Department of Computer Engineering, Boğaziçi University, 34342, Istanbul, Turkey
    194 rdf:type schema:Organization
    195 https://www.grid.ac/institutes/grid.24956.3c schema:alternateName Istanbul Bilgi University
    196 schema:name Department of Industrial Engineering, Istanbul Bilgi University, 34060, Istanbul, Turkey
    197 rdf:type schema:Organization
    198 https://www.grid.ac/institutes/grid.5334.1 schema:alternateName Sabancı University
    199 schema:name Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
    200 rdf:type schema:Organization
    201 https://www.grid.ac/institutes/grid.6906.9 schema:alternateName Erasmus University Rotterdam
    202 schema:name Econometric Institute, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands
    203 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...