A comparison of different routing schemes for the robust network loading problem: polyhedral results and computation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04

AUTHORS

Sara Mattia, Michael Poss

ABSTRACT

We consider the capacity formulation of the Robust Network Loading Problem. The aim of the paper is to study what happens from the theoretical and from the computational point of view when the routing policy (or scheme) changes. The theoretical results consider static, volume, affine and dynamic routing, along with splittable and unsplittable flows. Our polyhedral study provides evidence that some well-known valid inequalities (the robust cutset inequalities) are facets for all the considered routing/flows policies under the same assumptions. We also introduce a new class of valid inequalities, the robust 3-partition inequalities, showing that, instead, they are facets in some settings, but not in others. A branch-and-cut algorithm is also proposed and tested. The computational experiments refer to the problem with splittable flows and the budgeted uncertainty set. We report results on several instances coming from real-life networks, also including historical traffic data, as well as on randomly generated instances. Our results show that the problem with static and volume routing can be solved quite efficiently in practice and that, in many cases, volume routing is cheaper than static routing, thus possibly representing the best compromise between cost and computing time. Moreover, unlikely from what one may expect, the problem with dynamic routing is easier to solve than the one with affine routing, which is hardly tractable, even using decomposition methods. More... »

PAGES

753-800

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10589-017-9956-z

DOI

http://dx.doi.org/10.1007/s10589-017-9956-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092556477


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti", 
          "id": "https://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mattia", 
        "givenName": "Sara", 
        "id": "sg:person.011371004613.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011371004613.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "UMR CNRS 5506 LIRMM, Universit\u00e9 de Montpellier, Rue Ada 161, 34095, Montpellier cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poss", 
        "givenName": "Michael", 
        "id": "sg:person.012420012421.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012420012421.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/net.20165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001726135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001726135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/380752.380830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002641933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01581104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003225806", 
          "https://doi.org/10.1007/bf01581104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01581104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003225806", 
          "https://doi.org/10.1007/bf01581104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.21621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003592419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disopt.2006.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003686939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005199519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005199519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.21497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009796630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-012-9500-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010491794", 
          "https://doi.org/10.1007/s10589-012-9500-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-013-0679-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092263", 
          "https://doi.org/10.1007/s11590-013-0679-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-013-0679-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092263", 
          "https://doi.org/10.1007/s11590-013-0679-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2012.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016024190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2009.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016830326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-005-1741-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017209164", 
          "https://doi.org/10.1007/s11081-005-1741-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-005-1741-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017209164", 
          "https://doi.org/10.1007/s11081-005-1741-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2012.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020381692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2009.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021868279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jagm.1997.0866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023057587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disopt.2006.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023157547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10287-016-0249-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024657922", 
          "https://doi.org/10.1007/s10287-016-0249-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-010-9364-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024732279", 
          "https://doi.org/10.1007/s10589-010-9364-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.21515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025243628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029028461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029028461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.21486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030945966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2013.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031821711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/781027.781053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034304197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037973506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039840939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-011-1003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040871297", 
          "https://doi.org/10.1007/s10479-011-1003-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2016.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043929932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2009.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044515737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-016-0991-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046414967", 
          "https://doi.org/10.1007/s10107-016-0991-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.21488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046866928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047018051", 
          "https://doi.org/10.1007/bf01580612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047018051", 
          "https://doi.org/10.1007/bf01580612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-003-0454-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047809141", 
          "https://doi.org/10.1007/s10107-003-0454-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.21482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049081505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.20145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051274189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2602362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920452", 
          "https://doi.org/10.1057/palgrave.jors.2602362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/316188.316209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053065739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623494279134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.1100.0380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064706831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1030.0065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064725549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1120.1147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.2014.1314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064728016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.2016.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064728187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/drcn.2007.4762287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093535991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/drcn.2007.4762277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095372277"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "We consider the capacity formulation of the Robust Network Loading Problem. The aim of the paper is to study what happens from the theoretical and from the computational point of view when the routing policy (or scheme) changes. The theoretical results consider static, volume, affine and dynamic routing, along with splittable and unsplittable flows. Our polyhedral study provides evidence that some well-known valid inequalities (the robust cutset inequalities) are facets for all the considered routing/flows policies under the same assumptions. We also introduce a new class of valid inequalities, the robust 3-partition inequalities, showing that, instead, they are facets in some settings, but not in others. A branch-and-cut algorithm is also proposed and tested. The computational experiments refer to the problem with splittable flows and the budgeted uncertainty set. We report results on several instances coming from real-life networks, also including historical traffic data, as well as on randomly generated instances. Our results show that the problem with static and volume routing can be solved quite efficiently in practice and that, in many cases, volume routing is cheaper than static routing, thus possibly representing the best compromise between cost and computing time. Moreover, unlikely from what one may expect, the problem with dynamic routing is easier to solve than the one with affine routing, which is hardly tractable, even using decomposition methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10589-017-9956-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042206", 
        "issn": [
          "0926-6003", 
          "1573-2894"
        ], 
        "name": "Computational Optimization and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "A comparison of different routing schemes for the robust network loading problem: polyhedral results and computation", 
    "pagination": "753-800", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aed0979f503ecb6868bc888f7a4d31ffab8862a88d4c1f3dc5a6f25262e9de64"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10589-017-9956-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092556477"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10589-017-9956-z", 
      "https://app.dimensions.ai/details/publication/pub.1092556477"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10589-017-9956-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-017-9956-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-017-9956-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-017-9956-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-017-9956-z'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10589-017-9956-z schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Na6605756b86c40b59cab5415ac091d28
4 schema:citation sg:pub.10.1007/bf01580612
5 sg:pub.10.1007/bf01581104
6 sg:pub.10.1007/s10107-003-0454-y
7 sg:pub.10.1007/s10107-016-0991-9
8 sg:pub.10.1007/s10287-016-0249-2
9 sg:pub.10.1007/s10479-011-1003-3
10 sg:pub.10.1007/s10589-010-9364-0
11 sg:pub.10.1007/s10589-012-9500-0
12 sg:pub.10.1007/s11081-005-1741-7
13 sg:pub.10.1007/s11590-013-0679-5
14 sg:pub.10.1057/palgrave.jors.2602362
15 https://doi.org/10.1002/net.20098
16 https://doi.org/10.1002/net.20145
17 https://doi.org/10.1002/net.20165
18 https://doi.org/10.1002/net.20183
19 https://doi.org/10.1002/net.20371
20 https://doi.org/10.1002/net.21482
21 https://doi.org/10.1002/net.21486
22 https://doi.org/10.1002/net.21488
23 https://doi.org/10.1002/net.21497
24 https://doi.org/10.1002/net.21515
25 https://doi.org/10.1002/net.21621
26 https://doi.org/10.1006/jagm.1997.0866
27 https://doi.org/10.1016/j.cor.2012.07.001
28 https://doi.org/10.1016/j.dam.2009.09.025
29 https://doi.org/10.1016/j.disopt.2006.10.002
30 https://doi.org/10.1016/j.disopt.2006.10.007
31 https://doi.org/10.1016/j.ejor.2010.03.007
32 https://doi.org/10.1016/j.omega.2016.11.001
33 https://doi.org/10.1016/j.orl.2009.01.009
34 https://doi.org/10.1016/j.orl.2009.05.007
35 https://doi.org/10.1016/j.orl.2012.09.009
36 https://doi.org/10.1016/j.orl.2013.05.003
37 https://doi.org/10.1109/drcn.2007.4762277
38 https://doi.org/10.1109/drcn.2007.4762287
39 https://doi.org/10.1137/s1052623494279134
40 https://doi.org/10.1145/316188.316209
41 https://doi.org/10.1145/380752.380830
42 https://doi.org/10.1145/781027.781053
43 https://doi.org/10.1287/ijoc.1100.0380
44 https://doi.org/10.1287/opre.1030.0065
45 https://doi.org/10.1287/opre.1120.1147
46 https://doi.org/10.1287/opre.2014.1314
47 https://doi.org/10.1287/opre.2016.1486
48 schema:datePublished 2018-04
49 schema:datePublishedReg 2018-04-01
50 schema:description We consider the capacity formulation of the Robust Network Loading Problem. The aim of the paper is to study what happens from the theoretical and from the computational point of view when the routing policy (or scheme) changes. The theoretical results consider static, volume, affine and dynamic routing, along with splittable and unsplittable flows. Our polyhedral study provides evidence that some well-known valid inequalities (the robust cutset inequalities) are facets for all the considered routing/flows policies under the same assumptions. We also introduce a new class of valid inequalities, the robust 3-partition inequalities, showing that, instead, they are facets in some settings, but not in others. A branch-and-cut algorithm is also proposed and tested. The computational experiments refer to the problem with splittable flows and the budgeted uncertainty set. We report results on several instances coming from real-life networks, also including historical traffic data, as well as on randomly generated instances. Our results show that the problem with static and volume routing can be solved quite efficiently in practice and that, in many cases, volume routing is cheaper than static routing, thus possibly representing the best compromise between cost and computing time. Moreover, unlikely from what one may expect, the problem with dynamic routing is easier to solve than the one with affine routing, which is hardly tractable, even using decomposition methods.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N5905f613f1d44e1f97d4d4e9552dda71
55 Nfed0e555d44a4798b76d2842fca32474
56 sg:journal.1042206
57 schema:name A comparison of different routing schemes for the robust network loading problem: polyhedral results and computation
58 schema:pagination 753-800
59 schema:productId N1609e0d075584ebd952b896dca16c55d
60 N341d8252d4624af9b7fa22a5028ce177
61 N8843911bb3d84eaa9dd415de5b615444
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092556477
63 https://doi.org/10.1007/s10589-017-9956-z
64 schema:sdDatePublished 2019-04-10T18:29
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N950ea4a06ad04937aa7328baf1a2d99e
67 schema:url https://link.springer.com/10.1007%2Fs10589-017-9956-z
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N1609e0d075584ebd952b896dca16c55d schema:name readcube_id
72 schema:value aed0979f503ecb6868bc888f7a4d31ffab8862a88d4c1f3dc5a6f25262e9de64
73 rdf:type schema:PropertyValue
74 N3077cc3ca87646d6a174c1b7f48df9ff rdf:first sg:person.012420012421.51
75 rdf:rest rdf:nil
76 N341d8252d4624af9b7fa22a5028ce177 schema:name dimensions_id
77 schema:value pub.1092556477
78 rdf:type schema:PropertyValue
79 N5905f613f1d44e1f97d4d4e9552dda71 schema:volumeNumber 69
80 rdf:type schema:PublicationVolume
81 N8843911bb3d84eaa9dd415de5b615444 schema:name doi
82 schema:value 10.1007/s10589-017-9956-z
83 rdf:type schema:PropertyValue
84 N950ea4a06ad04937aa7328baf1a2d99e schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Na6605756b86c40b59cab5415ac091d28 rdf:first sg:person.011371004613.07
87 rdf:rest N3077cc3ca87646d6a174c1b7f48df9ff
88 Nfed0e555d44a4798b76d2842fca32474 schema:issueNumber 3
89 rdf:type schema:PublicationIssue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
94 schema:name Computation Theory and Mathematics
95 rdf:type schema:DefinedTerm
96 sg:journal.1042206 schema:issn 0926-6003
97 1573-2894
98 schema:name Computational Optimization and Applications
99 rdf:type schema:Periodical
100 sg:person.011371004613.07 schema:affiliation https://www.grid.ac/institutes/grid.419461.f
101 schema:familyName Mattia
102 schema:givenName Sara
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011371004613.07
104 rdf:type schema:Person
105 sg:person.012420012421.51 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
106 schema:familyName Poss
107 schema:givenName Michael
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012420012421.51
109 rdf:type schema:Person
110 sg:pub.10.1007/bf01580612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047018051
111 https://doi.org/10.1007/bf01580612
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01581104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003225806
114 https://doi.org/10.1007/bf01581104
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10107-003-0454-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047809141
117 https://doi.org/10.1007/s10107-003-0454-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10107-016-0991-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046414967
120 https://doi.org/10.1007/s10107-016-0991-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10287-016-0249-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024657922
123 https://doi.org/10.1007/s10287-016-0249-2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10479-011-1003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040871297
126 https://doi.org/10.1007/s10479-011-1003-3
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10589-010-9364-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024732279
129 https://doi.org/10.1007/s10589-010-9364-0
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10589-012-9500-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010491794
132 https://doi.org/10.1007/s10589-012-9500-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11081-005-1741-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017209164
135 https://doi.org/10.1007/s11081-005-1741-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11590-013-0679-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011092263
138 https://doi.org/10.1007/s11590-013-0679-5
139 rdf:type schema:CreativeWork
140 sg:pub.10.1057/palgrave.jors.2602362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052920452
141 https://doi.org/10.1057/palgrave.jors.2602362
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/net.20098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005199519
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/net.20145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051274189
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/net.20165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001726135
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/net.20183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037973506
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/net.20371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029028461
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/net.21482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049081505
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/net.21486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030945966
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/net.21488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046866928
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/net.21497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009796630
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/net.21515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025243628
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/net.21621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003592419
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1006/jagm.1997.0866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023057587
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.cor.2012.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020381692
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.dam.2009.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044515737
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.disopt.2006.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023157547
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.disopt.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003686939
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ejor.2010.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039840939
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.omega.2016.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043929932
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.orl.2009.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016830326
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.orl.2009.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021868279
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.orl.2012.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016024190
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.orl.2013.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031821711
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/drcn.2007.4762277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095372277
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/drcn.2007.4762287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093535991
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1137/s1052623494279134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883481
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1145/316188.316209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053065739
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/380752.380830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002641933
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/781027.781053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034304197
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1287/ijoc.1100.0380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706831
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1287/opre.1030.0065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064725549
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1287/opre.1120.1147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726702
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1287/opre.2014.1314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064728016
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1287/opre.2016.1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064728187
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
210 schema:name UMR CNRS 5506 LIRMM, Université de Montpellier, Rue Ada 161, 34095, Montpellier cedex 5, France
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti
213 schema:name Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185, Rome, Italy
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...