Ontology type: schema:ScholarlyArticle
2014-10-07
AUTHORSIoannis K. Argyros, Á. Alberto Magreñán
ABSTRACTWe present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost. More... »
PAGES423-439
http://scigraph.springernature.com/pub.10.1007/s10589-014-9704-6
DOIhttp://dx.doi.org/10.1007/s10589-014-9704-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052934492
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA",
"id": "http://www.grid.ac/institutes/grid.253592.a",
"name": [
"Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
],
"type": "Organization"
},
"familyName": "Argyros",
"givenName": "Ioannis K.",
"id": "sg:person.015707547201.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departamento de TFG/TFM, Universidad Internacional de La Rioja (UNIR), 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Departamento de TFG/TFM, Universidad Internacional de La Rioja (UNIR), 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Magre\u00f1\u00e1n",
"givenName": "\u00c1. Alberto",
"id": "sg:person.013576636334.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10589-007-9071-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001842603",
"https://doi.org/10.1007/s10589-007-9071-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01389446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050904177",
"https://doi.org/10.1007/bf01389446"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-011-9446-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048783623",
"https://doi.org/10.1007/s11075-011-9446-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10589-009-9249-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014575484",
"https://doi.org/10.1007/s10589-009-9249-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4984-9_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004284301",
"https://doi.org/10.1007/978-1-4612-4984-9_13"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-10-07",
"datePublishedReg": "2014-10-07",
"description": "We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97\u2013118, 2008), Chen and Li (Appl Math Comput 170:686\u2013705, 2005), Chen and Li (Appl Math Comput 324:1381\u20131394, 2006), Ferreira (J Comput Appl Math 235:1515\u20131522, 2011), Ferreira and Gon\u00e7alves (Comput Optim Appl 48:1\u201321, 2011), Ferreira and Gon\u00e7alves (J Complex 27(1):111\u2013125, 2011), Li et al. (J Complex 26:268\u2013295, 2010), Li et al. (Comput Optim Appl 47:1057\u20131067, 2004), Proinov (J Complex 25:38\u201362, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185\u2013196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123\u2013134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.",
"genre": "article",
"id": "sg:pub.10.1007/s10589-014-9704-6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1042206",
"issn": [
"0926-6003",
"1573-2894"
],
"name": "Computational Optimization and Applications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "60"
}
],
"keywords": [
"local convergence analysis",
"least squares problem",
"Gauss-Newton method",
"majorant condition",
"convergence analysis",
"squares problem",
"nonlinear least squares problem",
"tighter error estimates",
"same computational cost",
"majorant function",
"Li et al",
"error estimates",
"computational cost",
"large radius",
"et al",
"Chen",
"Proinov",
"problem",
"convergence",
"Gross",
"Ferreira",
"Wang",
"Gon\u00e7alves",
"estimates",
"radius",
"al",
"conditions",
"function",
"distance",
"analysis",
"advantages",
"Li",
"cost",
"Martin",
"earlier studies",
"relationship",
"study",
"Ewing",
"clear relationship",
"method"
],
"name": "Improved local convergence analysis of the Gauss\u2013Newton method under a majorant condition",
"pagination": "423-439",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052934492"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10589-014-9704-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10589-014-9704-6",
"https://app.dimensions.ai/details/publication/pub.1052934492"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_615.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10589-014-9704-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9704-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9704-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9704-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9704-6'
This table displays all metadata directly associated to this object as RDF triples.
128 TRIPLES
22 PREDICATES
70 URIs
57 LITERALS
6 BLANK NODES