A survey on multi-objective evolutionary algorithms for many-objective problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02-20

AUTHORS

Christian von Lücken, Benjamín Barán, Carlos Brizuela

ABSTRACT

Multi-objective evolutionary algorithms (MOEAs) are well-suited for solving several complex multi-objective problems with two or three objectives. However, as the number of conflicting objectives increases, the performance of most MOEAs is severely deteriorated. How to improve MOEAs’ performance when solving many-objective problems, i.e. problems with four or more conflicting objectives, is an important issue since a large number of this type of problems exists in science and engineering; thus, several researchers have proposed different alternatives. This paper presents a review of the use of MOEAs in many-objective problems describing the evolution of the field, the methods that were developed, as well as the main findings and open questions that need to be answered in order to continue shaping the field. More... »

PAGES

707-756

References to SciGraph publications

  • 2005-01-01. Scalable Test Problems for Evolutionary Multiobjective Optimization in EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION
  • 2009-03-12. Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored in FRONTIERS OF COMPUTER SCIENCE
  • 1999. Multi-objective Optimization in Evolutionary Algorithms Using Satisfiability Classes in COMPUTATIONAL INTELLIGENCE
  • 2007-01-01. Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2005. Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-objective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2007-01-01. Robust Multi-Objective Optimization in High Dimensional Spaces in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2007-01-01. Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2011. Effects of the Existence of Highly Correlated Objectives on the Behavior of MOEA/D in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2011. Improved Random One-Bit Climbers with Adaptive ε-Ranking and Tabu Moves for Many-Objective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2007-01-01. Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2011. Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2011. Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2003-04-01. Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2003-04-01. Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2008-01-01. On Handling a Large Number of Objectives A Posteriori and During Optimization in MULTIOBJECTIVE PROBLEM SOLVING FROM NATURE
  • 2001-07-06. Multi-objective Optimisation Based on Relation Favour in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2012-04-15. Variable space diversity, crossover and mutation in MOEA solving many-objective knapsack problems in ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE
  • 2007-01-01. Heatmap Visualization of Population Based Multi Objective Algorithms in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2005. Many-Objective Optimization: An Engineering Design Perspective in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2009-10-21. Faster Hypervolume-Based Search Using Monte Carlo Sampling in MULTIPLE CRITERIA DECISION MAKING FOR SUSTAINABLE ENERGY AND TRANSPORTATION SYSTEMS
  • 2004. Indicator-Based Selection in Multiobjective Search in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII
  • 2003-04-01. Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2006. Multi-Objective Equivalent Random Search in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX
  • 2005. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2007-01-01. Optimization of Scalarizing Functions Through Evolutionary Multiobjective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2005. Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ∈-Dominance in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2007-01-01. Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2011. Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2007-01-01. Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2006. A Preliminary Study on Handling Uncertainty in Indicator-Based Multiobjective Optimization in APPLICATIONS OF EVOLUTIONARY COMPUTING
  • 2009. A Diversity Management Operator for Evolutionary Many-Objective Optimisation in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 1998. Multiobjective optimization using evolutionary algorithms — A comparative case study in PARALLEL PROBLEM SOLVING FROM NATURE — PPSN V
  • 2000. The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization in PARALLEL PROBLEM SOLVING FROM NATURE PPSN VI
  • 2003. Graphical Illustration of Pareto Optimal Solutions in MULTI-OBJECTIVE PROGRAMMING AND GOAL PROGRAMMING
  • 2009. Many-Objective Optimization by Space Partitioning and Adaptive ε-Ranking on MNK-Landscapes in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2009. Combining Aggregation with Pareto Optimization: A Case Study in Evolutionary Molecular Design in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2009. Many-Objective Optimization for Knapsack Problems Using Correlation-Based Weighted Sum Approach in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2009. Online Objective Reduction to Deal with Many-Objective Problems in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2009. Adaptation of Scalarizing Functions in MOEA/D: An Adaptive Scalarizing Function-Based Multiobjective Evolutionary Algorithm in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2003-04-01. Performance Scaling of Multi-objective Evolutionary Algorithms in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2006-05-01. Unsupervised Learning of Image Manifolds by Semidefinite Programming in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1998. Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms in SOFT COMPUTING IN ENGINEERING DESIGN AND MANUFACTURING
  • 2006. Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX
  • 2001-07-06. Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10589-014-9644-1

    DOI

    http://dx.doi.org/10.1007/s10589-014-9644-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039194861


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Facultad Polit\u00e9cnica, Universidad Nacional de Asunci\u00f3n, San Lorenzo, Paraguay", 
              "id": "http://www.grid.ac/institutes/grid.412213.7", 
              "name": [
                "Facultad Polit\u00e9cnica, Universidad Nacional de Asunci\u00f3n, San Lorenzo, Paraguay"
              ], 
              "type": "Organization"
            }, 
            "familyName": "von L\u00fccken", 
            "givenName": "Christian", 
            "id": "sg:person.014003162137.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003162137.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Nacional de Asunci\u00f3n, San Lorenzo, Paraguay", 
              "id": "http://www.grid.ac/institutes/grid.412213.7", 
              "name": [
                "Universidad Nacional de Asunci\u00f3n, San Lorenzo, Paraguay"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bar\u00e1n", 
            "givenName": "Benjam\u00edn", 
            "id": "sg:person.016034460047.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034460047.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CISESE, Km 107 Carretera Tijuana-Ensenada, 22860, Ensenada, B.C., Mexico", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "CISESE, Km 107 Carretera Tijuana-Ensenada, 22860, Ensenada, B.C., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brizuela", 
            "givenName": "Carlos", 
            "id": "sg:person.013274255245.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274255245.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-19893-9_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012795613", 
              "https://doi.org/10.1007/978-3-642-19893-9_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44719-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037295160", 
              "https://doi.org/10.1007/3-540-44719-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-19893-9_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049890632", 
              "https://doi.org/10.1007/978-3-642-19893-9_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36970-8_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052684481", 
              "https://doi.org/10.1007/3-540-36970-8_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45356-3_82", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047358338", 
              "https://doi.org/10.1007/3-540-45356-3_82"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36970-8_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006497744", 
              "https://doi.org/10.1007/3-540-36970-8_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11732242_71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039314282", 
              "https://doi.org/10.1007/11732242_71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024882773", 
              "https://doi.org/10.1007/978-3-540-70928-2_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48774-3_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020447058", 
              "https://doi.org/10.1007/3-540-48774-3_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038012782", 
              "https://doi.org/10.1007/978-3-540-70928-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-36510-5_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050978476", 
              "https://doi.org/10.1007/978-3-540-36510-5_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04045-0_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009702878", 
              "https://doi.org/10.1007/978-3-642-04045-0_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-19893-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023502098", 
              "https://doi.org/10.1007/978-3-642-19893-9_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01020-0_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031994839", 
              "https://doi.org/10.1007/978-3-642-01020-0_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11704-009-0005-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021891115", 
              "https://doi.org/10.1007/s11704-009-0005-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31880-4_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040754004", 
              "https://doi.org/10.1007/978-3-540-31880-4_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01020-0_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051425743", 
              "https://doi.org/10.1007/978-3-642-01020-0_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30217-9_84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006836276", 
              "https://doi.org/10.1007/978-3-540-30217-9_84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01020-0_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026909380", 
              "https://doi.org/10.1007/978-3-642-01020-0_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-005-4939-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046936930", 
              "https://doi.org/10.1007/s11263-005-4939-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31880-4_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018925932", 
              "https://doi.org/10.1007/978-3-540-31880-4_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11844297_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028044855", 
              "https://doi.org/10.1007/11844297_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01020-0_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045729101", 
              "https://doi.org/10.1007/978-3-642-01020-0_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36970-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036245522", 
              "https://doi.org/10.1007/3-540-36970-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11844297_54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002020571", 
              "https://doi.org/10.1007/11844297_54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10472-012-9293-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000508369", 
              "https://doi.org/10.1007/s10472-012-9293-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31880-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002682714", 
              "https://doi.org/10.1007/978-3-540-31880-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002827888", 
              "https://doi.org/10.1007/978-3-540-70928-2_55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72964-8_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023975443", 
              "https://doi.org/10.1007/978-3-540-72964-8_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014873269", 
              "https://doi.org/10.1007/978-3-540-70928-2_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-84628-137-7_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028475054", 
              "https://doi.org/10.1007/1-84628-137-7_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0056872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008568979", 
              "https://doi.org/10.1007/bfb0056872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-19893-9_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021053611", 
              "https://doi.org/10.1007/978-3-642-19893-9_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-0427-8_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026208157", 
              "https://doi.org/10.1007/978-1-4471-0427-8_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040936709", 
              "https://doi.org/10.1007/978-3-540-70928-2_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01020-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001721323", 
              "https://doi.org/10.1007/978-3-642-01020-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44719-9_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031684504", 
              "https://doi.org/10.1007/3-540-44719-9_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36970-8_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040296825", 
              "https://doi.org/10.1007/3-540-36970-8_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01020-0_37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037563443", 
              "https://doi.org/10.1007/978-3-642-01020-0_37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31880-4_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022230444", 
              "https://doi.org/10.1007/978-3-540-31880-4_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018651112", 
              "https://doi.org/10.1007/978-3-540-70928-2_58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036316149", 
              "https://doi.org/10.1007/978-3-540-70928-2_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70928-2_54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051090919", 
              "https://doi.org/10.1007/978-3-540-70928-2_54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-19893-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051295801", 
              "https://doi.org/10.1007/978-3-642-19893-9_12"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-02-20", 
        "datePublishedReg": "2014-02-20", 
        "description": "Multi-objective evolutionary algorithms (MOEAs) are well-suited for solving several complex multi-objective problems with two or three objectives. However, as the number of conflicting objectives increases, the performance of most MOEAs is severely deteriorated. How to improve MOEAs\u2019 performance when solving many-objective problems, i.e. problems with four or more conflicting objectives, is an important issue since a large number of this type of problems exists in science and engineering; thus, several researchers have proposed different alternatives. This paper presents a review of the use of MOEAs in many-objective problems describing the evolution of the field, the methods that were developed, as well as the main findings and open questions that need to be answered in order to continue shaping the field.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10589-014-9644-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042206", 
            "issn": [
              "0926-6003", 
              "1573-2894"
            ], 
            "name": "Computational Optimization and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "keywords": [
          "multi-objective evolutionary algorithm", 
          "objective problems", 
          "most multi-objective evolutionary algorithms", 
          "complex multi-objective problems", 
          "evolutionary algorithm", 
          "multi-objective problem", 
          "more conflicting objectives", 
          "types of problems", 
          "conflicting objectives", 
          "objectives increases", 
          "problem", 
          "algorithm", 
          "open question", 
          "important issue", 
          "different alternatives", 
          "large number", 
          "performance", 
          "field", 
          "number", 
          "engineering", 
          "objective", 
          "researchers", 
          "issues", 
          "order", 
          "science", 
          "method", 
          "evolution", 
          "alternative", 
          "use", 
          "questions", 
          "types", 
          "main findings", 
          "survey", 
          "review", 
          "increase", 
          "findings", 
          "paper", 
          "use of MOEAs"
        ], 
        "name": "A survey on multi-objective evolutionary algorithms for many-objective problems", 
        "pagination": "707-756", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039194861"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10589-014-9644-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10589-014-9644-1", 
          "https://app.dimensions.ai/details/publication/pub.1039194861"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_630.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10589-014-9644-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9644-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9644-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9644-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-014-9644-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    295 TRIPLES      22 PREDICATES      108 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10589-014-9644-1 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:0103
    4 schema:author N6bb83686628f400081879b5c63a9d33f
    5 schema:citation sg:pub.10.1007/1-84628-137-7_6
    6 sg:pub.10.1007/11732242_71
    7 sg:pub.10.1007/11844297_47
    8 sg:pub.10.1007/11844297_54
    9 sg:pub.10.1007/3-540-36970-8_16
    10 sg:pub.10.1007/3-540-36970-8_2
    11 sg:pub.10.1007/3-540-36970-8_27
    12 sg:pub.10.1007/3-540-36970-8_56
    13 sg:pub.10.1007/3-540-44719-9_11
    14 sg:pub.10.1007/3-540-44719-9_6
    15 sg:pub.10.1007/3-540-45356-3_82
    16 sg:pub.10.1007/3-540-48774-3_14
    17 sg:pub.10.1007/978-1-4471-0427-8_25
    18 sg:pub.10.1007/978-3-540-30217-9_84
    19 sg:pub.10.1007/978-3-540-31880-4_2
    20 sg:pub.10.1007/978-3-540-31880-4_28
    21 sg:pub.10.1007/978-3-540-31880-4_35
    22 sg:pub.10.1007/978-3-540-31880-4_5
    23 sg:pub.10.1007/978-3-540-36510-5_27
    24 sg:pub.10.1007/978-3-540-70928-2_29
    25 sg:pub.10.1007/978-3-540-70928-2_5
    26 sg:pub.10.1007/978-3-540-70928-2_54
    27 sg:pub.10.1007/978-3-540-70928-2_55
    28 sg:pub.10.1007/978-3-540-70928-2_56
    29 sg:pub.10.1007/978-3-540-70928-2_57
    30 sg:pub.10.1007/978-3-540-70928-2_58
    31 sg:pub.10.1007/978-3-540-70928-2_8
    32 sg:pub.10.1007/978-3-540-72964-8_18
    33 sg:pub.10.1007/978-3-642-01020-0_11
    34 sg:pub.10.1007/978-3-642-01020-0_33
    35 sg:pub.10.1007/978-3-642-01020-0_34
    36 sg:pub.10.1007/978-3-642-01020-0_35
    37 sg:pub.10.1007/978-3-642-01020-0_36
    38 sg:pub.10.1007/978-3-642-01020-0_37
    39 sg:pub.10.1007/978-3-642-04045-0_27
    40 sg:pub.10.1007/978-3-642-19893-9_10
    41 sg:pub.10.1007/978-3-642-19893-9_11
    42 sg:pub.10.1007/978-3-642-19893-9_12
    43 sg:pub.10.1007/978-3-642-19893-9_13
    44 sg:pub.10.1007/978-3-642-19893-9_14
    45 sg:pub.10.1007/bfb0056872
    46 sg:pub.10.1007/s10472-012-9293-y
    47 sg:pub.10.1007/s11263-005-4939-z
    48 sg:pub.10.1007/s11704-009-0005-7
    49 schema:datePublished 2014-02-20
    50 schema:datePublishedReg 2014-02-20
    51 schema:description Multi-objective evolutionary algorithms (MOEAs) are well-suited for solving several complex multi-objective problems with two or three objectives. However, as the number of conflicting objectives increases, the performance of most MOEAs is severely deteriorated. How to improve MOEAs’ performance when solving many-objective problems, i.e. problems with four or more conflicting objectives, is an important issue since a large number of this type of problems exists in science and engineering; thus, several researchers have proposed different alternatives. This paper presents a review of the use of MOEAs in many-objective problems describing the evolution of the field, the methods that were developed, as well as the main findings and open questions that need to be answered in order to continue shaping the field.
    52 schema:genre article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree false
    55 schema:isPartOf N9e5c2b33b80a47e4aa129737f97181c8
    56 Na722241a49e74acda93e8a857bdd8fc6
    57 sg:journal.1042206
    58 schema:keywords algorithm
    59 alternative
    60 complex multi-objective problems
    61 conflicting objectives
    62 different alternatives
    63 engineering
    64 evolution
    65 evolutionary algorithm
    66 field
    67 findings
    68 important issue
    69 increase
    70 issues
    71 large number
    72 main findings
    73 method
    74 more conflicting objectives
    75 most multi-objective evolutionary algorithms
    76 multi-objective evolutionary algorithm
    77 multi-objective problem
    78 number
    79 objective
    80 objective problems
    81 objectives increases
    82 open question
    83 order
    84 paper
    85 performance
    86 problem
    87 questions
    88 researchers
    89 review
    90 science
    91 survey
    92 types
    93 types of problems
    94 use
    95 use of MOEAs
    96 schema:name A survey on multi-objective evolutionary algorithms for many-objective problems
    97 schema:pagination 707-756
    98 schema:productId N8b332a1c30914f91867d59e6a1f90c41
    99 Nd11cb1333d5149e58db3e711b40bff4c
    100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039194861
    101 https://doi.org/10.1007/s10589-014-9644-1
    102 schema:sdDatePublished 2021-11-01T18:22
    103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    104 schema:sdPublisher N720bc96d8b6e455bb83a6946add271b9
    105 schema:url https://doi.org/10.1007/s10589-014-9644-1
    106 sgo:license sg:explorer/license/
    107 sgo:sdDataset articles
    108 rdf:type schema:ScholarlyArticle
    109 N585f6a415651452eb00fd2e680de0cbb rdf:first sg:person.016034460047.23
    110 rdf:rest Nfdbd68553e324d0fbea3783ba1f8aba7
    111 N6bb83686628f400081879b5c63a9d33f rdf:first sg:person.014003162137.43
    112 rdf:rest N585f6a415651452eb00fd2e680de0cbb
    113 N720bc96d8b6e455bb83a6946add271b9 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 N8b332a1c30914f91867d59e6a1f90c41 schema:name doi
    116 schema:value 10.1007/s10589-014-9644-1
    117 rdf:type schema:PropertyValue
    118 N9e5c2b33b80a47e4aa129737f97181c8 schema:volumeNumber 58
    119 rdf:type schema:PublicationVolume
    120 Na722241a49e74acda93e8a857bdd8fc6 schema:issueNumber 3
    121 rdf:type schema:PublicationIssue
    122 Nd11cb1333d5149e58db3e711b40bff4c schema:name dimensions_id
    123 schema:value pub.1039194861
    124 rdf:type schema:PropertyValue
    125 Nfdbd68553e324d0fbea3783ba1f8aba7 rdf:first sg:person.013274255245.19
    126 rdf:rest rdf:nil
    127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Mathematical Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Applied Mathematics
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Numerical and Computational Mathematics
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1042206 schema:issn 0926-6003
    137 1573-2894
    138 schema:name Computational Optimization and Applications
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.013274255245.19 schema:affiliation grid-institutes:None
    142 schema:familyName Brizuela
    143 schema:givenName Carlos
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274255245.19
    145 rdf:type schema:Person
    146 sg:person.014003162137.43 schema:affiliation grid-institutes:grid.412213.7
    147 schema:familyName von Lücken
    148 schema:givenName Christian
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003162137.43
    150 rdf:type schema:Person
    151 sg:person.016034460047.23 schema:affiliation grid-institutes:grid.412213.7
    152 schema:familyName Barán
    153 schema:givenName Benjamín
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034460047.23
    155 rdf:type schema:Person
    156 sg:pub.10.1007/1-84628-137-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028475054
    157 https://doi.org/10.1007/1-84628-137-7_6
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/11732242_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039314282
    160 https://doi.org/10.1007/11732242_71
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/11844297_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044855
    163 https://doi.org/10.1007/11844297_47
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/11844297_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002020571
    166 https://doi.org/10.1007/11844297_54
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/3-540-36970-8_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006497744
    169 https://doi.org/10.1007/3-540-36970-8_16
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/3-540-36970-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036245522
    172 https://doi.org/10.1007/3-540-36970-8_2
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/3-540-36970-8_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052684481
    175 https://doi.org/10.1007/3-540-36970-8_27
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/3-540-36970-8_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296825
    178 https://doi.org/10.1007/3-540-36970-8_56
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/3-540-44719-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031684504
    181 https://doi.org/10.1007/3-540-44719-9_11
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/3-540-44719-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037295160
    184 https://doi.org/10.1007/3-540-44719-9_6
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/3-540-45356-3_82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047358338
    187 https://doi.org/10.1007/3-540-45356-3_82
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/3-540-48774-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020447058
    190 https://doi.org/10.1007/3-540-48774-3_14
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/978-1-4471-0427-8_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026208157
    193 https://doi.org/10.1007/978-1-4471-0427-8_25
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-3-540-30217-9_84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006836276
    196 https://doi.org/10.1007/978-3-540-30217-9_84
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-3-540-31880-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040754004
    199 https://doi.org/10.1007/978-3-540-31880-4_2
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/978-3-540-31880-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002682714
    202 https://doi.org/10.1007/978-3-540-31880-4_28
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/978-3-540-31880-4_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018925932
    205 https://doi.org/10.1007/978-3-540-31880-4_35
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/978-3-540-31880-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230444
    208 https://doi.org/10.1007/978-3-540-31880-4_5
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/978-3-540-36510-5_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050978476
    211 https://doi.org/10.1007/978-3-540-36510-5_27
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/978-3-540-70928-2_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036316149
    214 https://doi.org/10.1007/978-3-540-70928-2_29
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/978-3-540-70928-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038012782
    217 https://doi.org/10.1007/978-3-540-70928-2_5
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/978-3-540-70928-2_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051090919
    220 https://doi.org/10.1007/978-3-540-70928-2_54
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/978-3-540-70928-2_55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002827888
    223 https://doi.org/10.1007/978-3-540-70928-2_55
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/978-3-540-70928-2_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040936709
    226 https://doi.org/10.1007/978-3-540-70928-2_56
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/978-3-540-70928-2_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014873269
    229 https://doi.org/10.1007/978-3-540-70928-2_57
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/978-3-540-70928-2_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018651112
    232 https://doi.org/10.1007/978-3-540-70928-2_58
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/978-3-540-70928-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024882773
    235 https://doi.org/10.1007/978-3-540-70928-2_8
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/978-3-540-72964-8_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023975443
    238 https://doi.org/10.1007/978-3-540-72964-8_18
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/978-3-642-01020-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001721323
    241 https://doi.org/10.1007/978-3-642-01020-0_11
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/978-3-642-01020-0_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045729101
    244 https://doi.org/10.1007/978-3-642-01020-0_33
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/978-3-642-01020-0_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051425743
    247 https://doi.org/10.1007/978-3-642-01020-0_34
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/978-3-642-01020-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026909380
    250 https://doi.org/10.1007/978-3-642-01020-0_35
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/978-3-642-01020-0_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031994839
    253 https://doi.org/10.1007/978-3-642-01020-0_36
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/978-3-642-01020-0_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037563443
    256 https://doi.org/10.1007/978-3-642-01020-0_37
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/978-3-642-04045-0_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009702878
    259 https://doi.org/10.1007/978-3-642-04045-0_27
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/978-3-642-19893-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023502098
    262 https://doi.org/10.1007/978-3-642-19893-9_10
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/978-3-642-19893-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021053611
    265 https://doi.org/10.1007/978-3-642-19893-9_11
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/978-3-642-19893-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051295801
    268 https://doi.org/10.1007/978-3-642-19893-9_12
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/978-3-642-19893-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012795613
    271 https://doi.org/10.1007/978-3-642-19893-9_13
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/978-3-642-19893-9_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049890632
    274 https://doi.org/10.1007/978-3-642-19893-9_14
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/bfb0056872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008568979
    277 https://doi.org/10.1007/bfb0056872
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s10472-012-9293-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000508369
    280 https://doi.org/10.1007/s10472-012-9293-y
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s11263-005-4939-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046936930
    283 https://doi.org/10.1007/s11263-005-4939-z
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s11704-009-0005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021891115
    286 https://doi.org/10.1007/s11704-009-0005-7
    287 rdf:type schema:CreativeWork
    288 grid-institutes:None schema:alternateName CISESE, Km 107 Carretera Tijuana-Ensenada, 22860, Ensenada, B.C., Mexico
    289 schema:name CISESE, Km 107 Carretera Tijuana-Ensenada, 22860, Ensenada, B.C., Mexico
    290 rdf:type schema:Organization
    291 grid-institutes:grid.412213.7 schema:alternateName Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo, Paraguay
    292 Universidad Nacional de Asunción, San Lorenzo, Paraguay
    293 schema:name Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo, Paraguay
    294 Universidad Nacional de Asunción, San Lorenzo, Paraguay
    295 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...