On the convergence of trust region algorithms for unconstrained minimization without derivatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10

AUTHORS

M. J. D. Powell

ABSTRACT

We consider iterative trust region algorithms for the unconstrained minimization of an objective function , , when F is differentiable but no derivatives are available, and when each model of F is a linear or a quadratic polynomial. The models interpolate F at n+1 points, which defines them uniquely when they are linear polynomials. In the quadratic case, second derivatives of the models are derived from information from previous iterations, but there are so few data that typically only the magnitudes of second derivative estimates are correct. Nevertheless, numerical results show that much faster convergence is achieved when quadratic models are employed instead of linear ones. Just one new value of F is calculated on each iteration. Changes to the variables are either trust region steps or are designed to maintain suitable volumes and diameters of the convex hulls of the interpolation points. It is proved that, if F is bounded below, if ∇2F is also bounded, and if the number of iterations is infinite, then the sequence of gradients , k=1,2,3,…, converges to zero, where is the centre of the trust region of the k-th iteration. More... »

PAGES

527-555

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10589-012-9483-x

DOI

http://dx.doi.org/10.1007/s10589-012-9483-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046496834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, CB3 0WA, Cambridge, England, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "M. J. D.", 
        "id": "sg:person.07731545105.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/0-387-30065-1_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029457454", 
          "https://doi.org/10.1007/0-387-30065-1_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-8330-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046127469", 
          "https://doi.org/10.1007/978-94-015-8330-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060673424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898718768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "We consider iterative trust region algorithms for the unconstrained minimization of an objective function , , when F is differentiable but no derivatives are available, and when each model of F is a linear or a quadratic polynomial. The models interpolate F at n+1 points, which defines them uniquely when they are linear polynomials. In the quadratic case, second derivatives of the models are derived from information from previous iterations, but there are so few data that typically only the magnitudes of second derivative estimates are correct. Nevertheless, numerical results show that much faster convergence is achieved when quadratic models are employed instead of linear ones. Just one new value of F is calculated on each iteration. Changes to the variables are either trust region steps or are designed to maintain suitable volumes and diameters of the convex hulls of the interpolation points. It is proved that, if F is bounded below, if \u22072F is also bounded, and if the number of iterations is infinite, then the sequence of gradients , k=1,2,3,\u2026, converges to zero, where is the centre of the trust region of the k-th iteration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10589-012-9483-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042206", 
        "issn": [
          "0926-6003", 
          "1573-2894"
        ], 
        "name": "Computational Optimization and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "On the convergence of trust region algorithms for unconstrained minimization without derivatives", 
    "pagination": "527-555", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd7e2b3f64fcfe1ac787701bbb8542bfbb71c35f98824253edf5d4781e215696"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10589-012-9483-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046496834"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10589-012-9483-x", 
      "https://app.dimensions.ai/details/publication/pub.1046496834"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000483.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10589-012-9483-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-012-9483-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-012-9483-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-012-9483-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-012-9483-x'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10589-012-9483-x schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N02564b210c944b4ab6f15121ebafe766
4 schema:citation sg:pub.10.1007/0-387-30065-1_16
5 sg:pub.10.1007/978-94-015-8330-5_4
6 https://doi.org/10.1137/060673424
7 https://doi.org/10.1137/1.9780898718768
8 schema:datePublished 2012-10
9 schema:datePublishedReg 2012-10-01
10 schema:description We consider iterative trust region algorithms for the unconstrained minimization of an objective function , , when F is differentiable but no derivatives are available, and when each model of F is a linear or a quadratic polynomial. The models interpolate F at n+1 points, which defines them uniquely when they are linear polynomials. In the quadratic case, second derivatives of the models are derived from information from previous iterations, but there are so few data that typically only the magnitudes of second derivative estimates are correct. Nevertheless, numerical results show that much faster convergence is achieved when quadratic models are employed instead of linear ones. Just one new value of F is calculated on each iteration. Changes to the variables are either trust region steps or are designed to maintain suitable volumes and diameters of the convex hulls of the interpolation points. It is proved that, if F is bounded below, if ∇2F is also bounded, and if the number of iterations is infinite, then the sequence of gradients , k=1,2,3,…, converges to zero, where is the centre of the trust region of the k-th iteration.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N7221b8248b334da09a40bd3831b912d3
15 N9af5f06d74aa42af84d60e65d033f395
16 sg:journal.1042206
17 schema:name On the convergence of trust region algorithms for unconstrained minimization without derivatives
18 schema:pagination 527-555
19 schema:productId N50b5265bb49e40f89b6d049928b3a400
20 Ne49f56295c814b8e9b0b6fa3a5c1436c
21 Ne8596209f93c4e00a5a445d107b96942
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046496834
23 https://doi.org/10.1007/s10589-012-9483-x
24 schema:sdDatePublished 2019-04-11T01:00
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N6b62d70e025e433289bf14b33174817a
27 schema:url http://link.springer.com/10.1007/s10589-012-9483-x
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N02564b210c944b4ab6f15121ebafe766 rdf:first sg:person.07731545105.07
32 rdf:rest rdf:nil
33 N50b5265bb49e40f89b6d049928b3a400 schema:name doi
34 schema:value 10.1007/s10589-012-9483-x
35 rdf:type schema:PropertyValue
36 N6b62d70e025e433289bf14b33174817a schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N7221b8248b334da09a40bd3831b912d3 schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 N9af5f06d74aa42af84d60e65d033f395 schema:volumeNumber 53
41 rdf:type schema:PublicationVolume
42 Ne49f56295c814b8e9b0b6fa3a5c1436c schema:name readcube_id
43 schema:value dd7e2b3f64fcfe1ac787701bbb8542bfbb71c35f98824253edf5d4781e215696
44 rdf:type schema:PropertyValue
45 Ne8596209f93c4e00a5a445d107b96942 schema:name dimensions_id
46 schema:value pub.1046496834
47 rdf:type schema:PropertyValue
48 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
49 schema:name Information and Computing Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
52 schema:name Data Format
53 rdf:type schema:DefinedTerm
54 sg:journal.1042206 schema:issn 0926-6003
55 1573-2894
56 schema:name Computational Optimization and Applications
57 rdf:type schema:Periodical
58 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
59 schema:familyName Powell
60 schema:givenName M. J. D.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
62 rdf:type schema:Person
63 sg:pub.10.1007/0-387-30065-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029457454
64 https://doi.org/10.1007/0-387-30065-1_16
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/978-94-015-8330-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046127469
67 https://doi.org/10.1007/978-94-015-8330-5_4
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1137/060673424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849823
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1137/1.9780898718768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556221
72 rdf:type schema:CreativeWork
73 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
74 schema:name Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, CB3 0WA, Cambridge, England, UK
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...