Genetic Tabu search for robust fixed channel assignment under dynamic traffic data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Hakim Mabed, Alexandre Caminada, Jin-Kao Hao

ABSTRACT

The contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach. More... »

PAGES

483-506

References to SciGraph publications

  • 1996-06. Genetic and hybrid algorithms for graph coloring in ANNALS OF OPERATIONS RESEARCH
  • 2001-09. A Heuristic Approach for Antenna Positioning in Cellular Networks in JOURNAL OF HEURISTICS
  • 1999-12. Hybrid Evolutionary Algorithms for Graph Coloring in JOURNAL OF COMBINATORIAL OPTIMIZATION
  • 1997. Tabu Search in NONE
  • 1993-03. A user's guide to tabu search in ANNALS OF OPERATIONS RESEARCH
  • 2003-12. Models and solution techniques for frequency assignment problems in 4OR
  • 1998-06. Tabu Search for Frequency Assignment in Mobile Radio Networks in JOURNAL OF HEURISTICS
  • 2007. Evolutionary Algorithms for Real-World Instances of the Automatic Frequency Planning Problem in GSM Networks in EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9

    DOI

    http://dx.doi.org/10.1007/s10589-010-9376-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030237732


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "UFC, Laboratoire LIFC, 25200, Montb\u00e9liard, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mabed", 
            "givenName": "Hakim", 
            "id": "sg:person.011246777577.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246777577.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Technology of Belfort-Montb\u00e9liard", 
              "id": "https://www.grid.ac/institutes/grid.23082.3b", 
              "name": [
                "UTBM, Laboratoire SET, 90010, Belfort cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caminada", 
            "givenName": "Alexandre", 
            "id": "sg:person.012044360177.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044360177.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Angers", 
              "id": "https://www.grid.ac/institutes/grid.7252.2", 
              "name": [
                "LERIA, Universit\u00e9 d\u2019Angers, 2 boulevard Lavoisier, 49045, Angers cedex 01, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hao", 
            "givenName": "Jin-Kao", 
            "id": "sg:person.015275466607.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275466607.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1011373828276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007532348", 
              "https://doi.org/10.1023/a:1011373828276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2004.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007667616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1012335604", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-6089-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012335604", 
              "https://doi.org/10.1007/978-1-4615-6089-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-6089-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012335604", 
              "https://doi.org/10.1007/978-1-4615-6089-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02125407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013019705", 
              "https://doi.org/10.1007/bf02125407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02125407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013019705", 
              "https://doi.org/10.1007/bf02125407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(99)00254-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029287785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.micpro.2004.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029789859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02078647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031157377", 
              "https://doi.org/10.1007/bf02078647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02078647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031157377", 
              "https://doi.org/10.1007/bf02078647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-218x(03)00341-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036496975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-218x(03)00341-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036496975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009690321348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038973557", 
              "https://doi.org/10.1023/a:1009690321348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009823419804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041342329", 
              "https://doi.org/10.1023/a:1009823419804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-71615-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041918780", 
              "https://doi.org/10.1007/978-3-540-71615-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2007.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045641867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/359094.359101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049953014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/25.293646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061134455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/25.892573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061135441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/25.9886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061135677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/35.606024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061159467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/4235.887234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061172061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/98.511762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061251619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/proc.1980.11899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061444670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2003.808806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061818200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijmndi.2006.010812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067476716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10288-003-0022-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086154184", 
              "https://doi.org/10.1007/s10288-003-0022-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pimrc.1996.567545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093453740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetec.1998.686494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094300593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pimrc.1996.567550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094313950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetecf.2000.886117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094330871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetec.1999.778217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094593741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetec.1996.501410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095803143"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "The contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10589-010-9376-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042206", 
            "issn": [
              "0926-6003", 
              "1573-2894"
            ], 
            "name": "Computational Optimization and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "name": "Genetic Tabu search for robust fixed channel assignment under dynamic traffic data", 
        "pagination": "483-506", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "900c7dbdc60c04c5a3f9244b3542d9386d473c96701ad43683fcd5e74281e64e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10589-010-9376-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030237732"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10589-010-9376-9", 
          "https://app.dimensions.ai/details/publication/pub.1030237732"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000481.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10589-010-9376-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10589-010-9376-9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb4d00626516144e4a0b813459b1bb052
    4 schema:citation sg:pub.10.1007/978-1-4615-6089-0
    5 sg:pub.10.1007/978-3-540-71615-0_10
    6 sg:pub.10.1007/bf02078647
    7 sg:pub.10.1007/bf02125407
    8 sg:pub.10.1007/s10288-003-0022-6
    9 sg:pub.10.1023/a:1009690321348
    10 sg:pub.10.1023/a:1009823419804
    11 sg:pub.10.1023/a:1011373828276
    12 https://app.dimensions.ai/details/publication/pub.1012335604
    13 https://doi.org/10.1016/j.ins.2004.07.010
    14 https://doi.org/10.1016/j.micpro.2004.02.003
    15 https://doi.org/10.1016/j.sigpro.2007.12.004
    16 https://doi.org/10.1016/s0166-218x(03)00341-x
    17 https://doi.org/10.1016/s0377-2217(99)00254-4
    18 https://doi.org/10.1109/25.293646
    19 https://doi.org/10.1109/25.892573
    20 https://doi.org/10.1109/25.9886
    21 https://doi.org/10.1109/35.606024
    22 https://doi.org/10.1109/4235.887234
    23 https://doi.org/10.1109/98.511762
    24 https://doi.org/10.1109/pimrc.1996.567545
    25 https://doi.org/10.1109/pimrc.1996.567550
    26 https://doi.org/10.1109/proc.1980.11899
    27 https://doi.org/10.1109/tvt.2003.808806
    28 https://doi.org/10.1109/vetec.1996.501410
    29 https://doi.org/10.1109/vetec.1998.686494
    30 https://doi.org/10.1109/vetec.1999.778217
    31 https://doi.org/10.1109/vetecf.2000.886117
    32 https://doi.org/10.1145/359094.359101
    33 https://doi.org/10.1504/ijmndi.2006.010812
    34 schema:datePublished 2011-12
    35 schema:datePublishedReg 2011-12-01
    36 schema:description The contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N54bf634f7e1044bca16dd750b1e7e89e
    41 Nc13612e96b854632b0f5b28f446dca33
    42 sg:journal.1042206
    43 schema:name Genetic Tabu search for robust fixed channel assignment under dynamic traffic data
    44 schema:pagination 483-506
    45 schema:productId N20aada5f4f8143c1b9b0c07b8357484b
    46 N347ba18003134953a651b3316826ad99
    47 N43e4c975b0da40e6804f431228f27dd3
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030237732
    49 https://doi.org/10.1007/s10589-010-9376-9
    50 schema:sdDatePublished 2019-04-10T21:30
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N9525b506107549bb8ce584e3b48fb5ff
    53 schema:url http://link.springer.com/10.1007/s10589-010-9376-9
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N20aada5f4f8143c1b9b0c07b8357484b schema:name dimensions_id
    58 schema:value pub.1030237732
    59 rdf:type schema:PropertyValue
    60 N347ba18003134953a651b3316826ad99 schema:name doi
    61 schema:value 10.1007/s10589-010-9376-9
    62 rdf:type schema:PropertyValue
    63 N3e61dc8c58cc400d80efc43d19734edc rdf:first sg:person.015275466607.71
    64 rdf:rest rdf:nil
    65 N43e4c975b0da40e6804f431228f27dd3 schema:name readcube_id
    66 schema:value 900c7dbdc60c04c5a3f9244b3542d9386d473c96701ad43683fcd5e74281e64e
    67 rdf:type schema:PropertyValue
    68 N54bf634f7e1044bca16dd750b1e7e89e schema:volumeNumber 50
    69 rdf:type schema:PublicationVolume
    70 N8e43792d6df041a494c7078897c52130 rdf:first sg:person.012044360177.39
    71 rdf:rest N3e61dc8c58cc400d80efc43d19734edc
    72 N9525b506107549bb8ce584e3b48fb5ff schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nb4d00626516144e4a0b813459b1bb052 rdf:first sg:person.011246777577.63
    75 rdf:rest N8e43792d6df041a494c7078897c52130
    76 Nc13612e96b854632b0f5b28f446dca33 schema:issueNumber 3
    77 rdf:type schema:PublicationIssue
    78 Nc416fd5638154fd98e11266e6b29576a schema:name UFC, Laboratoire LIFC, 25200, Montbéliard, France
    79 rdf:type schema:Organization
    80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information and Computing Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Artificial Intelligence and Image Processing
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1042206 schema:issn 0926-6003
    87 1573-2894
    88 schema:name Computational Optimization and Applications
    89 rdf:type schema:Periodical
    90 sg:person.011246777577.63 schema:affiliation Nc416fd5638154fd98e11266e6b29576a
    91 schema:familyName Mabed
    92 schema:givenName Hakim
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246777577.63
    94 rdf:type schema:Person
    95 sg:person.012044360177.39 schema:affiliation https://www.grid.ac/institutes/grid.23082.3b
    96 schema:familyName Caminada
    97 schema:givenName Alexandre
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044360177.39
    99 rdf:type schema:Person
    100 sg:person.015275466607.71 schema:affiliation https://www.grid.ac/institutes/grid.7252.2
    101 schema:familyName Hao
    102 schema:givenName Jin-Kao
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275466607.71
    104 rdf:type schema:Person
    105 sg:pub.10.1007/978-1-4615-6089-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012335604
    106 https://doi.org/10.1007/978-1-4615-6089-0
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-540-71615-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041918780
    109 https://doi.org/10.1007/978-3-540-71615-0_10
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf02078647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031157377
    112 https://doi.org/10.1007/bf02078647
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf02125407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013019705
    115 https://doi.org/10.1007/bf02125407
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10288-003-0022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086154184
    118 https://doi.org/10.1007/s10288-003-0022-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1023/a:1009690321348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038973557
    121 https://doi.org/10.1023/a:1009690321348
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1023/a:1009823419804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041342329
    124 https://doi.org/10.1023/a:1009823419804
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1023/a:1011373828276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007532348
    127 https://doi.org/10.1023/a:1011373828276
    128 rdf:type schema:CreativeWork
    129 https://app.dimensions.ai/details/publication/pub.1012335604 schema:CreativeWork
    130 https://doi.org/10.1016/j.ins.2004.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007667616
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.micpro.2004.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029789859
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.sigpro.2007.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045641867
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/s0166-218x(03)00341-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036496975
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/s0377-2217(99)00254-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029287785
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/25.293646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061134455
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/25.892573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061135441
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/25.9886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061135677
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/35.606024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061159467
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/4235.887234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172061
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/98.511762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061251619
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/pimrc.1996.567545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093453740
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/pimrc.1996.567550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094313950
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/proc.1980.11899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444670
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/tvt.2003.808806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061818200
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/vetec.1996.501410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095803143
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/vetec.1998.686494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094300593
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/vetec.1999.778217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094593741
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/vetecf.2000.886117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094330871
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1145/359094.359101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049953014
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1504/ijmndi.2006.010812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067476716
    171 rdf:type schema:CreativeWork
    172 https://www.grid.ac/institutes/grid.23082.3b schema:alternateName University of Technology of Belfort-Montbéliard
    173 schema:name UTBM, Laboratoire SET, 90010, Belfort cedex, France
    174 rdf:type schema:Organization
    175 https://www.grid.ac/institutes/grid.7252.2 schema:alternateName University of Angers
    176 schema:name LERIA, Université d’Angers, 2 boulevard Lavoisier, 49045, Angers cedex 01, France
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...