Ontology type: schema:ScholarlyArticle Open Access: True
2011-12
AUTHORSHakim Mabed, Alexandre Caminada, Jin-Kao Hao
ABSTRACTThe contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach. More... »
PAGES483-506
http://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9
DOIhttp://dx.doi.org/10.1007/s10589-010-9376-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030237732
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"UFC, Laboratoire LIFC, 25200, Montb\u00e9liard, France"
],
"type": "Organization"
},
"familyName": "Mabed",
"givenName": "Hakim",
"id": "sg:person.011246777577.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246777577.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Technology of Belfort-Montb\u00e9liard",
"id": "https://www.grid.ac/institutes/grid.23082.3b",
"name": [
"UTBM, Laboratoire SET, 90010, Belfort cedex, France"
],
"type": "Organization"
},
"familyName": "Caminada",
"givenName": "Alexandre",
"id": "sg:person.012044360177.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044360177.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Angers",
"id": "https://www.grid.ac/institutes/grid.7252.2",
"name": [
"LERIA, Universit\u00e9 d\u2019Angers, 2 boulevard Lavoisier, 49045, Angers cedex 01, France"
],
"type": "Organization"
},
"familyName": "Hao",
"givenName": "Jin-Kao",
"id": "sg:person.015275466607.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275466607.71"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1011373828276",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007532348",
"https://doi.org/10.1023/a:1011373828276"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ins.2004.07.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007667616"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1012335604",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4615-6089-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012335604",
"https://doi.org/10.1007/978-1-4615-6089-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4615-6089-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012335604",
"https://doi.org/10.1007/978-1-4615-6089-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02125407",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013019705",
"https://doi.org/10.1007/bf02125407"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02125407",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013019705",
"https://doi.org/10.1007/bf02125407"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0377-2217(99)00254-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029287785"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.micpro.2004.02.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029789859"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02078647",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031157377",
"https://doi.org/10.1007/bf02078647"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02078647",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031157377",
"https://doi.org/10.1007/bf02078647"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0166-218x(03)00341-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036496975"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0166-218x(03)00341-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036496975"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009690321348",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038973557",
"https://doi.org/10.1023/a:1009690321348"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009823419804",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041342329",
"https://doi.org/10.1023/a:1009823419804"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71615-0_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041918780",
"https://doi.org/10.1007/978-3-540-71615-0_10"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.sigpro.2007.12.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045641867"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/359094.359101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049953014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/25.293646",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061134455"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/25.892573",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061135441"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/25.9886",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061135677"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/35.606024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061159467"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/4235.887234",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061172061"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/98.511762",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061251619"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/proc.1980.11899",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061444670"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tvt.2003.808806",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061818200"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1504/ijmndi.2006.010812",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067476716"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10288-003-0022-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086154184",
"https://doi.org/10.1007/s10288-003-0022-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/pimrc.1996.567545",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093453740"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/vetec.1998.686494",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094300593"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/pimrc.1996.567550",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094313950"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/vetecf.2000.886117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094330871"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/vetec.1999.778217",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094593741"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/vetec.1996.501410",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095803143"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-12",
"datePublishedReg": "2011-12-01",
"description": "The contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10589-010-9376-9",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1042206",
"issn": [
"0926-6003",
"1573-2894"
],
"name": "Computational Optimization and Applications",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "50"
}
],
"name": "Genetic Tabu search for robust fixed channel assignment under dynamic traffic data",
"pagination": "483-506",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"900c7dbdc60c04c5a3f9244b3542d9386d473c96701ad43683fcd5e74281e64e"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10589-010-9376-9"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030237732"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10589-010-9376-9",
"https://app.dimensions.ai/details/publication/pub.1030237732"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T21:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000481.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s10589-010-9376-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'
This table displays all metadata directly associated to this object as RDF triples.
177 TRIPLES
21 PREDICATES
57 URIs
19 LITERALS
7 BLANK NODES