Genetic Tabu search for robust fixed channel assignment under dynamic traffic data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Hakim Mabed, Alexandre Caminada, Jin-Kao Hao

ABSTRACT

The contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach. More... »

PAGES

483-506

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9

DOI

http://dx.doi.org/10.1007/s10589-010-9376-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030237732


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "UFC, Laboratoire LIFC, 25200, Montb\u00e9liard, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mabed", 
        "givenName": "Hakim", 
        "id": "sg:person.011246777577.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246777577.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology of Belfort-Montb\u00e9liard", 
          "id": "https://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "UTBM, Laboratoire SET, 90010, Belfort cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caminada", 
        "givenName": "Alexandre", 
        "id": "sg:person.012044360177.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044360177.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Angers", 
          "id": "https://www.grid.ac/institutes/grid.7252.2", 
          "name": [
            "LERIA, Universit\u00e9 d\u2019Angers, 2 boulevard Lavoisier, 49045, Angers cedex 01, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Jin-Kao", 
        "id": "sg:person.015275466607.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275466607.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011373828276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007532348", 
          "https://doi.org/10.1023/a:1011373828276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2004.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007667616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1012335604", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-6089-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012335604", 
          "https://doi.org/10.1007/978-1-4615-6089-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-6089-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012335604", 
          "https://doi.org/10.1007/978-1-4615-6089-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02125407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013019705", 
          "https://doi.org/10.1007/bf02125407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02125407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013019705", 
          "https://doi.org/10.1007/bf02125407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(99)00254-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029287785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micpro.2004.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029789859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02078647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031157377", 
          "https://doi.org/10.1007/bf02078647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02078647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031157377", 
          "https://doi.org/10.1007/bf02078647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-218x(03)00341-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036496975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-218x(03)00341-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036496975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009690321348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038973557", 
          "https://doi.org/10.1023/a:1009690321348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009823419804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041342329", 
          "https://doi.org/10.1023/a:1009823419804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71615-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918780", 
          "https://doi.org/10.1007/978-3-540-71615-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2007.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045641867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/359094.359101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049953014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/25.293646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061134455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/25.892573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061135441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/25.9886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061135677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/35.606024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061159467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.887234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/98.511762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061251619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1980.11899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2003.808806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061818200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijmndi.2006.010812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067476716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10288-003-0022-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086154184", 
          "https://doi.org/10.1007/s10288-003-0022-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pimrc.1996.567545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093453740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetec.1998.686494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094300593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pimrc.1996.567550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094313950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetecf.2000.886117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094330871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetec.1999.778217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094593741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetec.1996.501410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095803143"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "The contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10589-010-9376-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042206", 
        "issn": [
          "0926-6003", 
          "1573-2894"
        ], 
        "name": "Computational Optimization and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Genetic Tabu search for robust fixed channel assignment under dynamic traffic data", 
    "pagination": "483-506", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "900c7dbdc60c04c5a3f9244b3542d9386d473c96701ad43683fcd5e74281e64e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10589-010-9376-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030237732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10589-010-9376-9", 
      "https://app.dimensions.ai/details/publication/pub.1030237732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10589-010-9376-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10589-010-9376-9'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10589-010-9376-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N69204f1b444f488d92324780d6194c1a
4 schema:citation sg:pub.10.1007/978-1-4615-6089-0
5 sg:pub.10.1007/978-3-540-71615-0_10
6 sg:pub.10.1007/bf02078647
7 sg:pub.10.1007/bf02125407
8 sg:pub.10.1007/s10288-003-0022-6
9 sg:pub.10.1023/a:1009690321348
10 sg:pub.10.1023/a:1009823419804
11 sg:pub.10.1023/a:1011373828276
12 https://app.dimensions.ai/details/publication/pub.1012335604
13 https://doi.org/10.1016/j.ins.2004.07.010
14 https://doi.org/10.1016/j.micpro.2004.02.003
15 https://doi.org/10.1016/j.sigpro.2007.12.004
16 https://doi.org/10.1016/s0166-218x(03)00341-x
17 https://doi.org/10.1016/s0377-2217(99)00254-4
18 https://doi.org/10.1109/25.293646
19 https://doi.org/10.1109/25.892573
20 https://doi.org/10.1109/25.9886
21 https://doi.org/10.1109/35.606024
22 https://doi.org/10.1109/4235.887234
23 https://doi.org/10.1109/98.511762
24 https://doi.org/10.1109/pimrc.1996.567545
25 https://doi.org/10.1109/pimrc.1996.567550
26 https://doi.org/10.1109/proc.1980.11899
27 https://doi.org/10.1109/tvt.2003.808806
28 https://doi.org/10.1109/vetec.1996.501410
29 https://doi.org/10.1109/vetec.1998.686494
30 https://doi.org/10.1109/vetec.1999.778217
31 https://doi.org/10.1109/vetecf.2000.886117
32 https://doi.org/10.1145/359094.359101
33 https://doi.org/10.1504/ijmndi.2006.010812
34 schema:datePublished 2011-12
35 schema:datePublishedReg 2011-12-01
36 schema:description The contribution of this work is twofold. Firstly, we introduce a new channel assignment model for GSM radio networks. In this model both spatial and temporal variations of traffic are taken into account in order to improve network capacity and robustness. Secondly, using this model, we develop an original and effective hybrid algorithm to get high quality frequency plans. This algorithm combines a problem specific crossover and a Tabu search procedure. The proposed model and hybrid algorithm are evaluated using both artificial and real data. Computational results allow us to confirm the effectiveness of the proposed approach.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N3933ab7b169f4881a9a717731358b86e
41 N42c334ea0ed8433b90e1769001754c4f
42 sg:journal.1042206
43 schema:name Genetic Tabu search for robust fixed channel assignment under dynamic traffic data
44 schema:pagination 483-506
45 schema:productId N46abf3cacb394b599abaa49c32041e50
46 N9c9b8408e6f041b8b8ba0ed0d734656c
47 Nb09b39a54ed340a0a453697fa6b0930e
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030237732
49 https://doi.org/10.1007/s10589-010-9376-9
50 schema:sdDatePublished 2019-04-10T21:30
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nedc81036895a47ca95edcad2967e4970
53 schema:url http://link.springer.com/10.1007/s10589-010-9376-9
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N3933ab7b169f4881a9a717731358b86e schema:issueNumber 3
58 rdf:type schema:PublicationIssue
59 N42c334ea0ed8433b90e1769001754c4f schema:volumeNumber 50
60 rdf:type schema:PublicationVolume
61 N46abf3cacb394b599abaa49c32041e50 schema:name readcube_id
62 schema:value 900c7dbdc60c04c5a3f9244b3542d9386d473c96701ad43683fcd5e74281e64e
63 rdf:type schema:PropertyValue
64 N561eeeca080a4c86b224cc2b93486798 rdf:first sg:person.015275466607.71
65 rdf:rest rdf:nil
66 N69204f1b444f488d92324780d6194c1a rdf:first sg:person.011246777577.63
67 rdf:rest N748ac6150d45431a95c9995559e110d8
68 N748ac6150d45431a95c9995559e110d8 rdf:first sg:person.012044360177.39
69 rdf:rest N561eeeca080a4c86b224cc2b93486798
70 N8fa05077d5824e66a340ebf59810ee5c schema:name UFC, Laboratoire LIFC, 25200, Montbéliard, France
71 rdf:type schema:Organization
72 N9c9b8408e6f041b8b8ba0ed0d734656c schema:name dimensions_id
73 schema:value pub.1030237732
74 rdf:type schema:PropertyValue
75 Nb09b39a54ed340a0a453697fa6b0930e schema:name doi
76 schema:value 10.1007/s10589-010-9376-9
77 rdf:type schema:PropertyValue
78 Nedc81036895a47ca95edcad2967e4970 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1042206 schema:issn 0926-6003
87 1573-2894
88 schema:name Computational Optimization and Applications
89 rdf:type schema:Periodical
90 sg:person.011246777577.63 schema:affiliation N8fa05077d5824e66a340ebf59810ee5c
91 schema:familyName Mabed
92 schema:givenName Hakim
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246777577.63
94 rdf:type schema:Person
95 sg:person.012044360177.39 schema:affiliation https://www.grid.ac/institutes/grid.23082.3b
96 schema:familyName Caminada
97 schema:givenName Alexandre
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044360177.39
99 rdf:type schema:Person
100 sg:person.015275466607.71 schema:affiliation https://www.grid.ac/institutes/grid.7252.2
101 schema:familyName Hao
102 schema:givenName Jin-Kao
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275466607.71
104 rdf:type schema:Person
105 sg:pub.10.1007/978-1-4615-6089-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012335604
106 https://doi.org/10.1007/978-1-4615-6089-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-540-71615-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041918780
109 https://doi.org/10.1007/978-3-540-71615-0_10
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02078647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031157377
112 https://doi.org/10.1007/bf02078647
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02125407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013019705
115 https://doi.org/10.1007/bf02125407
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10288-003-0022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086154184
118 https://doi.org/10.1007/s10288-003-0022-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/a:1009690321348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038973557
121 https://doi.org/10.1023/a:1009690321348
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1009823419804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041342329
124 https://doi.org/10.1023/a:1009823419804
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1011373828276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007532348
127 https://doi.org/10.1023/a:1011373828276
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1012335604 schema:CreativeWork
130 https://doi.org/10.1016/j.ins.2004.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007667616
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.micpro.2004.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029789859
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.sigpro.2007.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045641867
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0166-218x(03)00341-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036496975
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0377-2217(99)00254-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029287785
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/25.293646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061134455
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/25.892573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061135441
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/25.9886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061135677
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/35.606024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061159467
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/4235.887234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172061
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/98.511762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061251619
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/pimrc.1996.567545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093453740
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/pimrc.1996.567550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094313950
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/proc.1980.11899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444670
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tvt.2003.808806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061818200
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/vetec.1996.501410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095803143
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/vetec.1998.686494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094300593
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/vetec.1999.778217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094593741
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/vetecf.2000.886117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094330871
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1145/359094.359101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049953014
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1504/ijmndi.2006.010812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067476716
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.23082.3b schema:alternateName University of Technology of Belfort-Montbéliard
173 schema:name UTBM, Laboratoire SET, 90010, Belfort cedex, France
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.7252.2 schema:alternateName University of Angers
176 schema:name LERIA, Université d’Angers, 2 boulevard Lavoisier, 49045, Angers cedex 01, France
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...