AF-algebras and topology of mapping tori View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Igor Nikolaev

ABSTRACT

The paper studies applications of C*-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of AF-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding AF-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2, 3 and 4. In conclusion, we consider two numerical examples illustrating our main results. More... »

PAGES

1069-1083

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8

DOI

http://dx.doi.org/10.1007/s10587-015-0228-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018918686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fields Institute for Research in Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.249304.8", 
          "name": [
            "The Fields Institute for Research in Mathematical Sciences, University of Toronto, College Street 222, M5T 3J1, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "Igor", 
        "id": "sg:person.010744723367.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744723367.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01259355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015508068", 
          "https://doi.org/10.1007/bf01259355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01259355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015508068", 
          "https://doi.org/10.1007/bf01259355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1974-13432-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034591494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1988-15685-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039484389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1967-11798-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041331921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1972-0312282-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049508917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0069405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052641351", 
          "https://doi.org/10.1007/bfb0069405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0069405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052641351", 
          "https://doi.org/10.1007/bfb0069405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4040-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053014477", 
          "https://doi.org/10.1007/978-1-4612-4040-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4040-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053014477", 
          "https://doi.org/10.1007/978-1-4612-4040-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1996380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069689613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098699141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "The paper studies applications of C*-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of AF-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding AF-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2, 3 and 4. In conclusion, we consider two numerical examples illustrating our main results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10587-015-0228-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135981", 
        "issn": [
          "0011-4642", 
          "1572-9141"
        ], 
        "name": "Czechoslovak Mathematical Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "name": "AF-algebras and topology of mapping tori", 
    "pagination": "1069-1083", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a244867f1e9bdc343878866dc27619237f951cc19a4c413fa5f8b736dd8a6b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10587-015-0228-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018918686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10587-015-0228-8", 
      "https://app.dimensions.ai/details/publication/pub.1018918686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10587-015-0228-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10587-015-0228-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1fa36c5ac42645b887a0b74f11070b1a
4 schema:citation sg:pub.10.1007/978-1-4612-4040-2
5 sg:pub.10.1007/bf01259355
6 sg:pub.10.1007/bfb0069405
7 https://doi.org/10.1090/cbms/046
8 https://doi.org/10.1090/s0002-9904-1967-11798-1
9 https://doi.org/10.1090/s0002-9904-1974-13432-4
10 https://doi.org/10.1090/s0002-9947-1972-0312282-2
11 https://doi.org/10.1090/s0273-0979-1988-15685-6
12 https://doi.org/10.2307/1971034
13 https://doi.org/10.2307/1996380
14 schema:datePublished 2015-12
15 schema:datePublishedReg 2015-12-01
16 schema:description The paper studies applications of C*-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of AF-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding AF-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2, 3 and 4. In conclusion, we consider two numerical examples illustrating our main results.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N4abc9e7a2e424bc280815df4f0bdb1e1
21 N8b88d1cdcae04a39a0a6909b4202bb84
22 sg:journal.1135981
23 schema:name AF-algebras and topology of mapping tori
24 schema:pagination 1069-1083
25 schema:productId N9d312eef46d64a64aba2d79c88ce428e
26 Nb740e0004d27436c8ad65ed8f651b5cd
27 Nc7f67aec386a4b01800cdd424c18a72f
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018918686
29 https://doi.org/10.1007/s10587-015-0228-8
30 schema:sdDatePublished 2019-04-10T23:17
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nf6a74b6f468c4a93a54022125886dbf3
33 schema:url http://link.springer.com/10.1007/s10587-015-0228-8
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1fa36c5ac42645b887a0b74f11070b1a rdf:first sg:person.010744723367.12
38 rdf:rest rdf:nil
39 N4abc9e7a2e424bc280815df4f0bdb1e1 schema:issueNumber 4
40 rdf:type schema:PublicationIssue
41 N8b88d1cdcae04a39a0a6909b4202bb84 schema:volumeNumber 65
42 rdf:type schema:PublicationVolume
43 N9d312eef46d64a64aba2d79c88ce428e schema:name doi
44 schema:value 10.1007/s10587-015-0228-8
45 rdf:type schema:PropertyValue
46 Nb740e0004d27436c8ad65ed8f651b5cd schema:name readcube_id
47 schema:value 5a244867f1e9bdc343878866dc27619237f951cc19a4c413fa5f8b736dd8a6b6
48 rdf:type schema:PropertyValue
49 Nc7f67aec386a4b01800cdd424c18a72f schema:name dimensions_id
50 schema:value pub.1018918686
51 rdf:type schema:PropertyValue
52 Nf6a74b6f468c4a93a54022125886dbf3 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1135981 schema:issn 0011-4642
61 1572-9141
62 schema:name Czechoslovak Mathematical Journal
63 rdf:type schema:Periodical
64 sg:person.010744723367.12 schema:affiliation https://www.grid.ac/institutes/grid.249304.8
65 schema:familyName Nikolaev
66 schema:givenName Igor
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744723367.12
68 rdf:type schema:Person
69 sg:pub.10.1007/978-1-4612-4040-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053014477
70 https://doi.org/10.1007/978-1-4612-4040-2
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01259355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015508068
73 https://doi.org/10.1007/bf01259355
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bfb0069405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052641351
76 https://doi.org/10.1007/bfb0069405
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1090/cbms/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098699141
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1090/s0002-9904-1967-11798-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041331921
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1090/s0002-9904-1974-13432-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034591494
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1090/s0002-9947-1972-0312282-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049508917
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1090/s0273-0979-1988-15685-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039484389
87 rdf:type schema:CreativeWork
88 https://doi.org/10.2307/1971034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676335
89 rdf:type schema:CreativeWork
90 https://doi.org/10.2307/1996380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069689613
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.249304.8 schema:alternateName Fields Institute for Research in Mathematical Sciences
93 schema:name The Fields Institute for Research in Mathematical Sciences, University of Toronto, College Street 222, M5T 3J1, Toronto, Ontario, Canada
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...