Ontology type: schema:ScholarlyArticle Open Access: True
2015-12
AUTHORS ABSTRACTThe paper studies applications of C*-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of AF-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding AF-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2, 3 and 4. In conclusion, we consider two numerical examples illustrating our main results. More... »
PAGES1069-1083
http://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8
DOIhttp://dx.doi.org/10.1007/s10587-015-0228-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018918686
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Fields Institute for Research in Mathematical Sciences",
"id": "https://www.grid.ac/institutes/grid.249304.8",
"name": [
"The Fields Institute for Research in Mathematical Sciences, University of Toronto, College Street 222, M5T 3J1, Toronto, Ontario, Canada"
],
"type": "Organization"
},
"familyName": "Nikolaev",
"givenName": "Igor",
"id": "sg:person.010744723367.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744723367.12"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01259355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015508068",
"https://doi.org/10.1007/bf01259355"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01259355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015508068",
"https://doi.org/10.1007/bf01259355"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9904-1974-13432-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034591494"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0273-0979-1988-15685-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039484389"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9904-1967-11798-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041331921"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1972-0312282-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049508917"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0069405",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052641351",
"https://doi.org/10.1007/bfb0069405"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0069405",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052641351",
"https://doi.org/10.1007/bfb0069405"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4040-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053014477",
"https://doi.org/10.1007/978-1-4612-4040-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4040-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053014477",
"https://doi.org/10.1007/978-1-4612-4040-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1971034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069676335"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1996380",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069689613"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/cbms/046",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098699141"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-12",
"datePublishedReg": "2015-12-01",
"description": "The paper studies applications of C*-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of AF-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding AF-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2, 3 and 4. In conclusion, we consider two numerical examples illustrating our main results.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10587-015-0228-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1135981",
"issn": [
"0011-4642",
"1572-9141"
],
"name": "Czechoslovak Mathematical Journal",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "65"
}
],
"name": "AF-algebras and topology of mapping tori",
"pagination": "1069-1083",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5a244867f1e9bdc343878866dc27619237f951cc19a4c413fa5f8b736dd8a6b6"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10587-015-0228-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018918686"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10587-015-0228-8",
"https://app.dimensions.ai/details/publication/pub.1018918686"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T23:17",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000481.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s10587-015-0228-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10587-015-0228-8'
This table displays all metadata directly associated to this object as RDF triples.
94 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES