On the mean value of the generalized Dirichlet L-functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08-03

AUTHORS

Rong Ma, Yuan Yi, Yulong Zhang

ABSTRACT

Let q ⩾ 3 be an integer, let χ denote a Dirichlet character modulo q. For any real number a ⩾ 0 we define the generalized Dirichlet L-functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L(s,\chi ,a) = \sum\limits_{n = 1}^\infty {\frac{{\chi (n)}} {{(n + a)^s }},} $$\end{document} where s = σ + it with σ > 1 and t both real. They can be extended to all s by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet L-functions especially for s = 1 and s = 1/2 + it, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput. More... »

PAGES

597-620

References to SciGraph publications

  • 1981-12. An asymptotic series for the mean value of DirichletL-functions in COMMENTARII MATHEMATICI HELVETICI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10587-010-0056-9

    DOI

    http://dx.doi.org/10.1007/s10587-010-0056-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038876523


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Science, Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.440588.5", 
              "name": [
                "School of Science, Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Rong", 
            "id": "sg:person.014071323365.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071323365.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Science, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "School of Science, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yi", 
            "givenName": "Yuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The School of Electronic and Information Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "The School of Electronic and Information Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yulong", 
            "id": "sg:person.011151534565.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151534565.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02566206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009184654", 
              "https://doi.org/10.1007/bf02566206"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-08-03", 
        "datePublishedReg": "2010-08-03", 
        "description": "Let q \u2a7e 3 be an integer, let \u03c7 denote a Dirichlet character modulo q. For any real number a \u2a7e 0 we define the generalized Dirichlet L-functions \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\nL(s,\\chi ,a) = \\sum\\limits_{n = 1}^\\infty  {\\frac{{\\chi (n)}}\n{{(n + a)^s }},} \n$$\\end{document} where s = \u03c3 + it with \u03c3 > 1 and t both real. They can be extended to all s by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet L-functions especially for s = 1 and s = 1/2 + it, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10587-010-0056-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1135981", 
            "issn": [
              "0011-4642", 
              "1572-9141"
            ], 
            "name": "Czechoslovak Mathematical Journal", 
            "publisher": "Institute of Mathematics, Czech Academy of Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "keywords": [
          "mean value", 
          "function", 
          "Dirichlet L", 
          "van der Corput", 
          "mean value property", 
          "analytic continuation", 
          "sharp asymptotic formula", 
          "real numbers", 
          "number", 
          "asymptotic formula", 
          "analytic methods", 
          "continuation", 
          "value property", 
          "modulo q.", 
          "values", 
          "method", 
          "Corput", 
          "integers", 
          "theory", 
          "formula", 
          "Q.", 
          "properties", 
          "paper", 
          "Dirichlet character modulo q.", 
          "character modulo q.", 
          "generalized Dirichlet L", 
          "der Corput"
        ], 
        "name": "On the mean value of the generalized Dirichlet L-functions", 
        "pagination": "597-620", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038876523"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10587-010-0056-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10587-010-0056-9", 
          "https://app.dimensions.ai/details/publication/pub.1038876523"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10587-010-0056-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10587-010-0056-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10587-010-0056-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10587-010-0056-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10587-010-0056-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      22 PREDICATES      53 URIs      44 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10587-010-0056-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1708f4c3863b4db8bea3f8ebc19d413f
    4 schema:citation sg:pub.10.1007/bf02566206
    5 schema:datePublished 2010-08-03
    6 schema:datePublishedReg 2010-08-03
    7 schema:description Let q ⩾ 3 be an integer, let χ denote a Dirichlet character modulo q. For any real number a ⩾ 0 we define the generalized Dirichlet L-functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L(s,\chi ,a) = \sum\limits_{n = 1}^\infty {\frac{{\chi (n)}} {{(n + a)^s }},} $$\end{document} where s = σ + it with σ > 1 and t both real. They can be extended to all s by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet L-functions especially for s = 1 and s = 1/2 + it, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N3593709bfd7f4a58a042fe89df5037f1
    12 N46d683e1e5a44db9ac49f57ad52a830a
    13 sg:journal.1135981
    14 schema:keywords Corput
    15 Dirichlet L
    16 Dirichlet character modulo q.
    17 Q.
    18 analytic continuation
    19 analytic methods
    20 asymptotic formula
    21 character modulo q.
    22 continuation
    23 der Corput
    24 formula
    25 function
    26 generalized Dirichlet L
    27 integers
    28 mean value
    29 mean value property
    30 method
    31 modulo q.
    32 number
    33 paper
    34 properties
    35 real numbers
    36 sharp asymptotic formula
    37 theory
    38 value property
    39 values
    40 van der Corput
    41 schema:name On the mean value of the generalized Dirichlet L-functions
    42 schema:pagination 597-620
    43 schema:productId N73d059c77e184cefbffedd115497c10a
    44 Nb017a3a4dcb4473b8ecad2f02e2e8ddd
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038876523
    46 https://doi.org/10.1007/s10587-010-0056-9
    47 schema:sdDatePublished 2022-01-01T18:23
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Nec9d7535dc20445b9d9cecd44e9f6505
    50 schema:url https://doi.org/10.1007/s10587-010-0056-9
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N1708f4c3863b4db8bea3f8ebc19d413f rdf:first sg:person.014071323365.09
    55 rdf:rest Nc896a52d71d8482ea7858e86e57b1cab
    56 N3593709bfd7f4a58a042fe89df5037f1 schema:issueNumber 3
    57 rdf:type schema:PublicationIssue
    58 N46d683e1e5a44db9ac49f57ad52a830a schema:volumeNumber 60
    59 rdf:type schema:PublicationVolume
    60 N73d059c77e184cefbffedd115497c10a schema:name doi
    61 schema:value 10.1007/s10587-010-0056-9
    62 rdf:type schema:PropertyValue
    63 N97b6348e8eb44bc781db88e08ff436d3 rdf:first sg:person.011151534565.45
    64 rdf:rest rdf:nil
    65 Nab97a0882c8848a4847b13ac6732e6e3 schema:affiliation grid-institutes:grid.43169.39
    66 schema:familyName Yi
    67 schema:givenName Yuan
    68 rdf:type schema:Person
    69 Nb017a3a4dcb4473b8ecad2f02e2e8ddd schema:name dimensions_id
    70 schema:value pub.1038876523
    71 rdf:type schema:PropertyValue
    72 Nc896a52d71d8482ea7858e86e57b1cab rdf:first Nab97a0882c8848a4847b13ac6732e6e3
    73 rdf:rest N97b6348e8eb44bc781db88e08ff436d3
    74 Nec9d7535dc20445b9d9cecd44e9f6505 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Mathematical Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Pure Mathematics
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1135981 schema:issn 0011-4642
    83 1572-9141
    84 schema:name Czechoslovak Mathematical Journal
    85 schema:publisher Institute of Mathematics, Czech Academy of Sciences
    86 rdf:type schema:Periodical
    87 sg:person.011151534565.45 schema:affiliation grid-institutes:grid.43169.39
    88 schema:familyName Zhang
    89 schema:givenName Yulong
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151534565.45
    91 rdf:type schema:Person
    92 sg:person.014071323365.09 schema:affiliation grid-institutes:grid.440588.5
    93 schema:familyName Ma
    94 schema:givenName Rong
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071323365.09
    96 rdf:type schema:Person
    97 sg:pub.10.1007/bf02566206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009184654
    98 https://doi.org/10.1007/bf02566206
    99 rdf:type schema:CreativeWork
    100 grid-institutes:grid.43169.39 schema:alternateName School of Science, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, P.R. China
    101 The School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, P.R. China
    102 schema:name School of Science, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, P.R. China
    103 The School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, P.R. China
    104 rdf:type schema:Organization
    105 grid-institutes:grid.440588.5 schema:alternateName School of Science, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi, P.R. China
    106 schema:name School of Science, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi, P.R. China
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...