Performance optimization and evaluation for parallel processing of big data in earth system models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-08

AUTHORS

Yuzhu Wang, Huiqun Hao, Junqiang Zhang, Jinrong Jiang, Juanxiong He, Yan Ma

ABSTRACT

Big data and high performance computing in Earth System Models (ESMs) are receiving increased attention in earth science research. When scaling to large-scale multi-core computing, efficient parallelization of an ESM, which demands fast parallel computing for long-term integration or climate simulation, becomes extremely challenging because of time-consuming internal big data communication. In this paper, an optimization algorithm for the massive data communication between the Weather Research and Forecasting model and Coupler version 7 in the Chinese Academy of Sciences-Earth System Model (CAS-ESM) is proposed. The optimization strategy is to transmit data from a small packet into a larger packet. Through experiments on a multi-core cluster, the efficiency of the algorithm is confirmed. Then, the parallel performance of the CAS-ESM is evaluated fully. Results show that the parallel efficiency of the CAS-ESM on 1024 CPU cores reaches nearly 70%, indicating that the CAS-ESM has desirable parallel performance and strong scalability. In addition, a generic performance evaluation method for ESMs from perspectives of optimal load balance and efficiency is proposed. Results show that the computing speed is the fastest and computational efficiency is the highest when the CAS-ESM runs on a certain number of cores. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10586-017-1477-0

DOI

http://dx.doi.org/10.1007/s10586-017-1477-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099699340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China University of Geosciences", 
          "id": "https://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "School of Information Engineering, China University of Geosciences, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yuzhu", 
        "id": "sg:person.015421406540.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421406540.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Computer Network Information Center, Chinese Academy of Sciences, Beijing, People\u2019s Republic of China", 
            "University of Chinese Academy of Sciences, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Huiqun", 
        "id": "sg:person.010772065615.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772065615.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Geosciences", 
          "id": "https://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "School of Computer Science, China University of Geosciences, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Junqiang", 
        "id": "sg:person.012501617740.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012501617740.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Network Information Center", 
          "id": "https://www.grid.ac/institutes/grid.433146.7", 
          "name": [
            "Computer Network Information Center, Chinese Academy of Sciences, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Jinrong", 
        "id": "sg:person.016673715315.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673715315.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Juanxiong", 
        "id": "sg:person.014416776663.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416776663.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Yan", 
        "id": "sg:person.015471444265.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471444265.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-003-0339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001799095", 
          "https://doi.org/10.1007/s00382-003-0339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2503210.2503231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008951533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpe.3822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009063781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-8-3579-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009908613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010861385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2013.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013617731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2016.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014592882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jame.20042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014804381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-015-0475-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016094778", 
          "https://doi.org/10.1007/s10586-015-0475-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8191(96)80001-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019477382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-014-0419-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025636041", 
          "https://doi.org/10.1007/s10586-014-0419-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpe.2979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026951355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jd005119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027630109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029377764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342011428141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030883490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342011428141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030883490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001gl013552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032972885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-014-0413-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035814630", 
          "https://doi.org/10.1007/s10586-014-0413-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-016-0569-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036836556", 
          "https://doi.org/10.1007/s10586-016-0569-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-016-0569-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036836556", 
          "https://doi.org/10.1007/s10586-016-0569-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-005-0044-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038007519", 
          "https://doi.org/10.1007/s00382-005-0044-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-005-0044-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038007519", 
          "https://doi.org/10.1007/s00382-005-0044-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-015-0428-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039871091", 
          "https://doi.org/10.1007/s10586-015-0428-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2008.0219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043808251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17538947.2016.1158328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047475978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-016-1652-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048362625", 
          "https://doi.org/10.1007/s11227-016-1652-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-016-1652-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048362625", 
          "https://doi.org/10.1007/s11227-016-1652-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049673316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-11-00367.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051006604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2014.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052026106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013ms000276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052294837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-12-00121.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053385369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/16742834.2014.11447144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058410054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2014.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2014.2366754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061535848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342005056096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342005056096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342011428142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342011428142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342012436965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342012436965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2017.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083743034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hpdc.1993.263852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086369760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.1998.10020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093195388"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-08", 
    "datePublishedReg": "2017-12-08", 
    "description": "Big data and high performance computing in Earth System Models (ESMs) are receiving increased attention in earth science research. When scaling to large-scale multi-core computing, efficient parallelization of an ESM, which demands fast parallel computing for long-term integration or climate simulation, becomes extremely challenging because of time-consuming internal big data communication. In this paper, an optimization algorithm for the massive data communication between the Weather Research and Forecasting model and Coupler version 7 in the Chinese Academy of Sciences-Earth System Model (CAS-ESM) is proposed. The optimization strategy is to transmit data from a small packet into a larger packet. Through experiments on a multi-core cluster, the efficiency of the algorithm is confirmed. Then, the parallel performance of the CAS-ESM is evaluated fully. Results show that the parallel efficiency of the CAS-ESM on 1024 CPU cores reaches nearly 70%, indicating that the CAS-ESM has desirable parallel performance and strong scalability. In addition, a generic performance evaluation method for ESMs from perspectives of optimal load balance and efficiency is proposed. Results show that the computing speed is the fastest and computational efficiency is the highest when the CAS-ESM runs on a certain number of cores.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10586-017-1477-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046649", 
        "issn": [
          "1386-7857", 
          "1573-7543"
        ], 
        "name": "Cluster Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Performance optimization and evaluation for parallel processing of big data in earth system models", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "999936d97816478263e5788d7f0b9c9dd3ffdac4b980016f1ff48fca8446785c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10586-017-1477-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099699340"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10586-017-1477-0", 
      "https://app.dimensions.ai/details/publication/pub.1099699340"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10586-017-1477-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1477-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1477-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1477-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1477-0'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      62 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10586-017-1477-0 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N4fa821a5efbb4c61bafad002fed991f4
4 schema:citation sg:pub.10.1007/s00382-003-0339-z
5 sg:pub.10.1007/s00382-005-0044-1
6 sg:pub.10.1007/s10586-014-0413-9
7 sg:pub.10.1007/s10586-014-0419-3
8 sg:pub.10.1007/s10586-015-0428-x
9 sg:pub.10.1007/s10586-015-0475-3
10 sg:pub.10.1007/s10586-016-0569-6
11 sg:pub.10.1007/s11227-016-1652-8
12 https://doi.org/10.1002/2013ms000276
13 https://doi.org/10.1002/cpe.2979
14 https://doi.org/10.1002/cpe.3822
15 https://doi.org/10.1002/grl.50944
16 https://doi.org/10.1002/jame.20042
17 https://doi.org/10.1002/joc.3733
18 https://doi.org/10.1016/0167-8191(96)80001-9
19 https://doi.org/10.1016/j.future.2013.12.039
20 https://doi.org/10.1016/j.future.2014.10.015
21 https://doi.org/10.1016/j.future.2016.06.009
22 https://doi.org/10.1016/j.future.2017.02.008
23 https://doi.org/10.1016/j.knosys.2014.10.004
24 https://doi.org/10.1029/2001gl013552
25 https://doi.org/10.1029/2004jd005119
26 https://doi.org/10.1080/16742834.2014.11447144
27 https://doi.org/10.1080/17538947.2016.1158328
28 https://doi.org/10.1098/rsta.2008.0219
29 https://doi.org/10.1109/hpdc.1993.263852
30 https://doi.org/10.1109/mcse.2014.52
31 https://doi.org/10.1109/sc.1998.10020
32 https://doi.org/10.1109/tc.2014.2366754
33 https://doi.org/10.1145/2503210.2503231
34 https://doi.org/10.1175/bams-d-11-00094.1
35 https://doi.org/10.1175/bams-d-12-00121.1
36 https://doi.org/10.1175/mwr-d-11-00367.1
37 https://doi.org/10.1177/1094342005056096
38 https://doi.org/10.1177/1094342011428141
39 https://doi.org/10.1177/1094342011428142
40 https://doi.org/10.1177/1094342012436965
41 https://doi.org/10.5194/gmd-8-3579-2015
42 schema:datePublished 2017-12-08
43 schema:datePublishedReg 2017-12-08
44 schema:description Big data and high performance computing in Earth System Models (ESMs) are receiving increased attention in earth science research. When scaling to large-scale multi-core computing, efficient parallelization of an ESM, which demands fast parallel computing for long-term integration or climate simulation, becomes extremely challenging because of time-consuming internal big data communication. In this paper, an optimization algorithm for the massive data communication between the Weather Research and Forecasting model and Coupler version 7 in the Chinese Academy of Sciences-Earth System Model (CAS-ESM) is proposed. The optimization strategy is to transmit data from a small packet into a larger packet. Through experiments on a multi-core cluster, the efficiency of the algorithm is confirmed. Then, the parallel performance of the CAS-ESM is evaluated fully. Results show that the parallel efficiency of the CAS-ESM on 1024 CPU cores reaches nearly 70%, indicating that the CAS-ESM has desirable parallel performance and strong scalability. In addition, a generic performance evaluation method for ESMs from perspectives of optimal load balance and efficiency is proposed. Results show that the computing speed is the fastest and computational efficiency is the highest when the CAS-ESM runs on a certain number of cores.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf sg:journal.1046649
49 schema:name Performance optimization and evaluation for parallel processing of big data in earth system models
50 schema:pagination 1-11
51 schema:productId N7dc37d09914d49f9978f0eac5ee57b26
52 N801c103be60c420b98c63b3be7315f30
53 Nf05b0bf5360f43188b3574fb05ce072f
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099699340
55 https://doi.org/10.1007/s10586-017-1477-0
56 schema:sdDatePublished 2019-04-10T23:20
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ncf491ca3bdf942c4b63ee33215d1f289
59 schema:url http://link.springer.com/10.1007/s10586-017-1477-0
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N1a4f2e1cf3af40cbab2d00b5aef2c3cf rdf:first sg:person.012501617740.45
64 rdf:rest Na5a056c97e21411cace284d457cea161
65 N4fa821a5efbb4c61bafad002fed991f4 rdf:first sg:person.015421406540.19
66 rdf:rest Nb4ff937b43274759a259cf8b767e5e45
67 N7dc37d09914d49f9978f0eac5ee57b26 schema:name dimensions_id
68 schema:value pub.1099699340
69 rdf:type schema:PropertyValue
70 N801c103be60c420b98c63b3be7315f30 schema:name readcube_id
71 schema:value 999936d97816478263e5788d7f0b9c9dd3ffdac4b980016f1ff48fca8446785c
72 rdf:type schema:PropertyValue
73 Na5a056c97e21411cace284d457cea161 rdf:first sg:person.016673715315.74
74 rdf:rest Nd63c3adcc33940f986dbf4e2d16c83f1
75 Nb4ff937b43274759a259cf8b767e5e45 rdf:first sg:person.010772065615.70
76 rdf:rest N1a4f2e1cf3af40cbab2d00b5aef2c3cf
77 Ncf491ca3bdf942c4b63ee33215d1f289 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nd63c3adcc33940f986dbf4e2d16c83f1 rdf:first sg:person.014416776663.91
80 rdf:rest Ne4a9072b5e98430e891575466c336f55
81 Ne4a9072b5e98430e891575466c336f55 rdf:first sg:person.015471444265.47
82 rdf:rest rdf:nil
83 Nf05b0bf5360f43188b3574fb05ce072f schema:name doi
84 schema:value 10.1007/s10586-017-1477-0
85 rdf:type schema:PropertyValue
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
90 schema:name Computer Software
91 rdf:type schema:DefinedTerm
92 sg:journal.1046649 schema:issn 1386-7857
93 1573-7543
94 schema:name Cluster Computing
95 rdf:type schema:Periodical
96 sg:person.010772065615.70 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
97 schema:familyName Hao
98 schema:givenName Huiqun
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772065615.70
100 rdf:type schema:Person
101 sg:person.012501617740.45 schema:affiliation https://www.grid.ac/institutes/grid.162107.3
102 schema:familyName Zhang
103 schema:givenName Junqiang
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012501617740.45
105 rdf:type schema:Person
106 sg:person.014416776663.91 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
107 schema:familyName He
108 schema:givenName Juanxiong
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416776663.91
110 rdf:type schema:Person
111 sg:person.015421406540.19 schema:affiliation https://www.grid.ac/institutes/grid.162107.3
112 schema:familyName Wang
113 schema:givenName Yuzhu
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421406540.19
115 rdf:type schema:Person
116 sg:person.015471444265.47 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
117 schema:familyName Ma
118 schema:givenName Yan
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471444265.47
120 rdf:type schema:Person
121 sg:person.016673715315.74 schema:affiliation https://www.grid.ac/institutes/grid.433146.7
122 schema:familyName Jiang
123 schema:givenName Jinrong
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673715315.74
125 rdf:type schema:Person
126 sg:pub.10.1007/s00382-003-0339-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001799095
127 https://doi.org/10.1007/s00382-003-0339-z
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00382-005-0044-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038007519
130 https://doi.org/10.1007/s00382-005-0044-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10586-014-0413-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035814630
133 https://doi.org/10.1007/s10586-014-0413-9
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10586-014-0419-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025636041
136 https://doi.org/10.1007/s10586-014-0419-3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10586-015-0428-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039871091
139 https://doi.org/10.1007/s10586-015-0428-x
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10586-015-0475-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016094778
142 https://doi.org/10.1007/s10586-015-0475-3
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10586-016-0569-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036836556
145 https://doi.org/10.1007/s10586-016-0569-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11227-016-1652-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048362625
148 https://doi.org/10.1007/s11227-016-1652-8
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/2013ms000276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052294837
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/cpe.2979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026951355
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/cpe.3822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009063781
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/grl.50944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049673316
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/jame.20042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014804381
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/joc.3733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010861385
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0167-8191(96)80001-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019477382
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.future.2013.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013617731
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.future.2014.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052026106
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.future.2016.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014592882
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.future.2017.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083743034
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.knosys.2014.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029377764
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1029/2001gl013552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032972885
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/2004jd005119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027630109
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/16742834.2014.11447144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058410054
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/17538947.2016.1158328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047475978
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1098/rsta.2008.0219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043808251
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/hpdc.1993.263852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086369760
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/mcse.2014.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398637
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/sc.1998.10020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093195388
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/tc.2014.2366754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061535848
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/2503210.2503231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008951533
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/bams-d-12-00121.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385369
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/mwr-d-11-00367.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051006604
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1177/1094342005056096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063977042
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1177/1094342011428141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030883490
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1177/1094342011428142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063977281
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1177/1094342012436965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063977298
207 rdf:type schema:CreativeWork
208 https://doi.org/10.5194/gmd-8-3579-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009908613
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.162107.3 schema:alternateName China University of Geosciences
211 schema:name School of Computer Science, China University of Geosciences, Wuhan, People’s Republic of China
212 School of Information Engineering, China University of Geosciences, Beijing, People’s Republic of China
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
215 schema:name Computer Network Information Center, Chinese Academy of Sciences, Beijing, People’s Republic of China
216 University of Chinese Academy of Sciences, Beijing, People’s Republic of China
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
219 schema:name Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, People’s Republic of China
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.433146.7 schema:alternateName Computer Network Information Center
222 schema:name Computer Network Information Center, Chinese Academy of Sciences, Beijing, People’s Republic of China
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
225 schema:name Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, People’s Republic of China
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...