Intelligent churn prediction for telecom using GP-AdaBoost learning and PSO undersampling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-25

AUTHORS

Adnan Idris, Aksam Iftikhar, Zia ur Rehman

ABSTRACT

Nowadays, telecom industry faces fierce competition in satisfying its customers. This competition thus requires an efficient churn prediction system to identify customers who are ready to quit. Such churn customers are then retained through addressing relevant reasons identified by the churn prediction system. Therefore, now the role of churn prediction system is not only restricted to accurately predict churners but also to interpret customer churn behavior. In this paper, searching capabilities of genetic programming (GP) and classification capabilities of AdaBoost are integrated in order to evolve a high-performance churn prediction system having better churn identification abilities. For this, frequently selected features in various GP expressions evaluated through AdaBoost based learning, are marked and analyzed. Moreover, the issue of imbalance present in telecom datasets is also addressed through particle swarm optimization (PSO) based undersampling method, which provides unbiased distribution of training set to GP-AdaBoost based prediction system. Particle swarm optimization based undersampling method in combination with GP-AdaBoost results a churn prediction system (ChP-GPAB), which offers better learning of churners and also identifies underlying factors responsible for churn behavior of customers. Two standard telecom data sets are used for evaluation and comparison of the proposed ChP-GPAB system. The results show that the proposed ChP-GPAB system yields 0.91 AUC and 0.86 AUC on Cell2Cell and Orange datasets, in addition to identifying the reasons of churning. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10586-017-1154-3

DOI

http://dx.doi.org/10.1007/s10586-017-1154-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091917018


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Computer Sciences & IT, The University of Poonch, Rawalakot, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Idris", 
        "givenName": "Adnan", 
        "id": "sg:person.011360326063.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360326063.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Sciences, COMSATS Institute of I.T, Lahore, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iftikhar", 
        "givenName": "Aksam", 
        "id": "sg:person.014674115330.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674115330.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Sciences, COMSATS Institute of I.T, Abbottabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rehman", 
        "givenName": "Zia ur", 
        "id": "sg:person.016654743513.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654743513.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000668936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001373698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-s3-s34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002175130", 
          "https://doi.org/10.1186/1471-2164-10-s3-s34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003109423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.07.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004266248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005459053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008385346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015943657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-009-9124-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017758686", 
          "https://doi.org/10.1007/s10462-009-9124-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-009-9124-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017758686", 
          "https://doi.org/10.1007/s10462-009-9124-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-009-9124-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017758686", 
          "https://doi.org/10.1007/s10462-009-9124-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10919390902821291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019649083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023411005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-013-0440-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025916134", 
          "https://doi.org/10.1007/s10489-013-0440-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026730572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2011.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027682687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkr.43.2.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028491700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkr.43.2.276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028491700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2014.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031000710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032261077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033876095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2012.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044182131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-18422-7_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045580159", 
          "https://doi.org/10.1007/978-3-319-18422-7_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2012.06.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046074570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047135060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047676247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050594373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.11.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052610676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2016.2619719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053117995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2003.819264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2013.2281544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2013.2285122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2013.2293393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2014.2367111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2012.2224355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061632218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2009.2033566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2011.2161285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/enic.2014.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093846083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iita.2009.392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094841880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.2012.6377917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095689807"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-25", 
    "datePublishedReg": "2017-09-25", 
    "description": "Nowadays, telecom industry faces fierce competition in satisfying its customers. This competition thus requires an efficient churn prediction system to identify customers who are ready to quit. Such churn customers are then retained through addressing relevant reasons identified by the churn prediction system. Therefore, now the role of churn prediction system is not only restricted to accurately predict churners but also to interpret customer churn behavior. In this paper, searching capabilities of genetic programming (GP) and classification capabilities of AdaBoost are integrated in order to evolve a high-performance churn prediction system having better churn identification abilities. For this, frequently selected features in various GP expressions evaluated through AdaBoost based learning, are marked and analyzed. Moreover, the issue of imbalance present in telecom datasets is also addressed through particle swarm optimization (PSO) based undersampling method, which provides unbiased distribution of training set to GP-AdaBoost based prediction system. Particle swarm optimization based undersampling method in combination with GP-AdaBoost results a churn prediction system (ChP-GPAB), which offers better learning of churners and also identifies underlying factors responsible for churn behavior of customers. Two standard telecom data sets are used for evaluation and comparison of the proposed ChP-GPAB system. The results show that the proposed ChP-GPAB system yields 0.91 AUC and 0.86 AUC on Cell2Cell and Orange datasets, in addition to identifying the reasons of churning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10586-017-1154-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046649", 
        "issn": [
          "1386-7857", 
          "1573-7543"
        ], 
        "name": "Cluster Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Intelligent churn prediction for telecom using GP-AdaBoost learning and PSO undersampling", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56e7af6bde03d9c54a8e4abcf9810ccd4ad5bcce6654e8946b92f022b231abde"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10586-017-1154-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091917018"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10586-017-1154-3", 
      "https://app.dimensions.ai/details/publication/pub.1091917018"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000538.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10586-017-1154-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1154-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1154-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1154-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1154-3'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      61 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10586-017-1154-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1739958451424cc88a0a9843f15045a0
4 schema:citation sg:pub.10.1007/978-3-319-18422-7_29
5 sg:pub.10.1007/s10462-009-9124-7
6 sg:pub.10.1007/s10489-013-0440-x
7 sg:pub.10.1186/1471-2164-10-s3-s34
8 https://doi.org/10.1016/j.asoc.2014.08.041
9 https://doi.org/10.1016/j.compeleceng.2012.09.001
10 https://doi.org/10.1016/j.cor.2005.11.007
11 https://doi.org/10.1016/j.ejor.2011.09.031
12 https://doi.org/10.1016/j.ejor.2012.06.040
13 https://doi.org/10.1016/j.eswa.2008.05.027
14 https://doi.org/10.1016/j.eswa.2008.08.050
15 https://doi.org/10.1016/j.eswa.2009.10.025
16 https://doi.org/10.1016/j.eswa.2009.10.027
17 https://doi.org/10.1016/j.eswa.2009.11.083
18 https://doi.org/10.1016/j.eswa.2010.07.091
19 https://doi.org/10.1016/j.eswa.2010.08.023
20 https://doi.org/10.1016/j.eswa.2010.12.045
21 https://doi.org/10.1016/j.eswa.2011.04.007
22 https://doi.org/10.1016/j.eswa.2011.08.024
23 https://doi.org/10.1016/j.eswa.2012.01.014
24 https://doi.org/10.1016/j.eswa.2013.04.020
25 https://doi.org/10.1016/j.eswa.2014.05.014
26 https://doi.org/10.1016/j.neucom.2016.12.009
27 https://doi.org/10.1080/10919390902821291
28 https://doi.org/10.1109/access.2016.2619719
29 https://doi.org/10.1109/enic.2014.29
30 https://doi.org/10.1109/icsmc.2012.6377917
31 https://doi.org/10.1109/iita.2009.392
32 https://doi.org/10.1109/tevc.2003.819264
33 https://doi.org/10.1109/tevc.2013.2281544
34 https://doi.org/10.1109/tevc.2013.2285122
35 https://doi.org/10.1109/tevc.2013.2293393
36 https://doi.org/10.1109/tevc.2014.2367111
37 https://doi.org/10.1109/tii.2012.2224355
38 https://doi.org/10.1109/tsmcc.2009.2033566
39 https://doi.org/10.1109/tsmcc.2011.2161285
40 https://doi.org/10.1509/jmkr.43.2.276
41 schema:datePublished 2017-09-25
42 schema:datePublishedReg 2017-09-25
43 schema:description Nowadays, telecom industry faces fierce competition in satisfying its customers. This competition thus requires an efficient churn prediction system to identify customers who are ready to quit. Such churn customers are then retained through addressing relevant reasons identified by the churn prediction system. Therefore, now the role of churn prediction system is not only restricted to accurately predict churners but also to interpret customer churn behavior. In this paper, searching capabilities of genetic programming (GP) and classification capabilities of AdaBoost are integrated in order to evolve a high-performance churn prediction system having better churn identification abilities. For this, frequently selected features in various GP expressions evaluated through AdaBoost based learning, are marked and analyzed. Moreover, the issue of imbalance present in telecom datasets is also addressed through particle swarm optimization (PSO) based undersampling method, which provides unbiased distribution of training set to GP-AdaBoost based prediction system. Particle swarm optimization based undersampling method in combination with GP-AdaBoost results a churn prediction system (ChP-GPAB), which offers better learning of churners and also identifies underlying factors responsible for churn behavior of customers. Two standard telecom data sets are used for evaluation and comparison of the proposed ChP-GPAB system. The results show that the proposed ChP-GPAB system yields 0.91 AUC and 0.86 AUC on Cell2Cell and Orange datasets, in addition to identifying the reasons of churning.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1046649
48 schema:name Intelligent churn prediction for telecom using GP-AdaBoost learning and PSO undersampling
49 schema:pagination 1-15
50 schema:productId N0ec5e02167794d3db96ebe58a362a7d9
51 Naa1098d54bb84cdfb19cfa52e9bc9a14
52 Nbbdcd2dff186483a977639959e5ae808
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091917018
54 https://doi.org/10.1007/s10586-017-1154-3
55 schema:sdDatePublished 2019-04-11T02:16
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nc7587aa6d13f4264aae3dc96209c8597
58 schema:url http://link.springer.com/10.1007%2Fs10586-017-1154-3
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0ec5e02167794d3db96ebe58a362a7d9 schema:name doi
63 schema:value 10.1007/s10586-017-1154-3
64 rdf:type schema:PropertyValue
65 N149a769433f04b618f885074ff2bb722 schema:name Department of Computer Sciences, COMSATS Institute of I.T, Abbottabad, Pakistan
66 rdf:type schema:Organization
67 N1739958451424cc88a0a9843f15045a0 rdf:first sg:person.011360326063.12
68 rdf:rest N3c7f5acb9add4567ae93aa371f040287
69 N324ded868cac4206922b64a485309710 schema:name Department of Computer Sciences & IT, The University of Poonch, Rawalakot, Pakistan
70 rdf:type schema:Organization
71 N3c7f5acb9add4567ae93aa371f040287 rdf:first sg:person.014674115330.21
72 rdf:rest N8ad8eb1fc7024dabadc82bffe33d5922
73 N8ad8eb1fc7024dabadc82bffe33d5922 rdf:first sg:person.016654743513.59
74 rdf:rest rdf:nil
75 Naa1098d54bb84cdfb19cfa52e9bc9a14 schema:name dimensions_id
76 schema:value pub.1091917018
77 rdf:type schema:PropertyValue
78 Nbbdcd2dff186483a977639959e5ae808 schema:name readcube_id
79 schema:value 56e7af6bde03d9c54a8e4abcf9810ccd4ad5bcce6654e8946b92f022b231abde
80 rdf:type schema:PropertyValue
81 Nc7587aa6d13f4264aae3dc96209c8597 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nf5ab03e85d544429ac51a94a250c0a20 schema:name Department of Computer Sciences, COMSATS Institute of I.T, Lahore, Pakistan
84 rdf:type schema:Organization
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:journal.1046649 schema:issn 1386-7857
92 1573-7543
93 schema:name Cluster Computing
94 rdf:type schema:Periodical
95 sg:person.011360326063.12 schema:affiliation N324ded868cac4206922b64a485309710
96 schema:familyName Idris
97 schema:givenName Adnan
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360326063.12
99 rdf:type schema:Person
100 sg:person.014674115330.21 schema:affiliation Nf5ab03e85d544429ac51a94a250c0a20
101 schema:familyName Iftikhar
102 schema:givenName Aksam
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674115330.21
104 rdf:type schema:Person
105 sg:person.016654743513.59 schema:affiliation N149a769433f04b618f885074ff2bb722
106 schema:familyName Rehman
107 schema:givenName Zia ur
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654743513.59
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-319-18422-7_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045580159
111 https://doi.org/10.1007/978-3-319-18422-7_29
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10462-009-9124-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017758686
114 https://doi.org/10.1007/s10462-009-9124-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10489-013-0440-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025916134
117 https://doi.org/10.1007/s10489-013-0440-x
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/1471-2164-10-s3-s34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002175130
120 https://doi.org/10.1186/1471-2164-10-s3-s34
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.asoc.2014.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031000710
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.compeleceng.2012.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044182131
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cor.2005.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023411005
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ejor.2011.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027682687
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ejor.2012.06.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046074570
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.eswa.2008.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001373698
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2008.08.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003109423
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.eswa.2009.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000668936
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.eswa.2009.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032261077
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.eswa.2009.11.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052610676
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.eswa.2010.07.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004266248
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.eswa.2010.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050594373
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.eswa.2010.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005459053
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.eswa.2011.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026730572
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.eswa.2011.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033876095
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.eswa.2012.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047676247
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.eswa.2013.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008385346
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.eswa.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047135060
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.neucom.2016.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015943657
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/10919390902821291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019649083
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/access.2016.2619719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053117995
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/enic.2014.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093846083
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/icsmc.2012.6377917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095689807
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/iita.2009.392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094841880
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tevc.2003.819264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604610
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tevc.2013.2281544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605176
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tevc.2013.2285122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605183
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tevc.2013.2293393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605192
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tevc.2014.2367111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605237
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tii.2012.2224355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632218
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tsmcc.2009.2033566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798185
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tsmcc.2011.2161285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798360
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1509/jmkr.43.2.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028491700
187 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...