Study on a confidence machine learning method based on ensemble learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Fang Chun Jiang

ABSTRACT

Confidence machine learning method is an important research content in machine learning area and of significant importance to high-risk machine learning application area. In confidence machine learning, design and calculation of confidence level is a difficulty; nevertheless, the algorithm in this paper enables confidence classification even when specific threshold setting is omitted and confidence level calculation for each example and unknown sample is neglected. Based on ensemble learning structure, this algorithm employs twice one-class classifier to classify binary problems, and with reject option being set, confidence learning of binary classification is performed by means of multi-layer ensemble learning. The algorithm has been validated on eight experimental datasets, such as heart disease and diabetes mellitus, and good results have been achieved. The learning method proposed in this paper can make the confidence machine learning easier and more efficient. In the era of big data, the research of pattern recognition algorithm based on small sample is still of great significance. More... »

PAGES

3357-3368

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10586-017-1085-z

DOI

http://dx.doi.org/10.1007/s10586-017-1085-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091046754


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shenzhen Institute of Information Technology", 
          "id": "https://www.grid.ac/institutes/grid.464441.7", 
          "name": [
            "School of Computer and Information Technology, Beijing Jiaotong University, 100044, Beijing, China", 
            "Shenzhen Institute of Information Technology, 518172, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Fang Chun", 
        "id": "sg:person.07772142625.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07772142625.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10845-015-1045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010275380", 
          "https://doi.org/10.1007/s10845-015-1045-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mat.0000000000000014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010430199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mat.0000000000000014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010430199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mat.0000000000000014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010430199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-014-1485-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012534974", 
          "https://doi.org/10.1007/s00500-014-1485-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2007.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013896781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-014-1325-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018501142", 
          "https://doi.org/10.1007/s00500-014-1325-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b17399-112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021240507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3169/itej.69.j257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037868059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2006.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042194503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2003.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044925653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.155943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.862202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2016.2594486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061645140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1970.1054406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1016.2011.01399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071326188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/2220-2829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072603316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1351324917000080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084119704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/grc.2006.1635774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095110507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/grc.2006.1635774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095110507"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Confidence machine learning method is an important research content in machine learning area and of significant importance to high-risk machine learning application area. In confidence machine learning, design and calculation of confidence level is a difficulty; nevertheless, the algorithm in this paper enables confidence classification even when specific threshold setting is omitted and confidence level calculation for each example and unknown sample is neglected. Based on ensemble learning structure, this algorithm employs twice one-class classifier to classify binary problems, and with reject option being set, confidence learning of binary classification is performed by means of multi-layer ensemble learning. The algorithm has been validated on eight experimental datasets, such as heart disease and diabetes mellitus, and good results have been achieved. The learning method proposed in this paper can make the confidence machine learning easier and more efficient. In the era of big data, the research of pattern recognition algorithm based on small sample is still of great significance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10586-017-1085-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046649", 
        "issn": [
          "1386-7857", 
          "1573-7543"
        ], 
        "name": "Cluster Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Study on a confidence machine learning method based on ensemble learning", 
    "pagination": "3357-3368", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1646ff627ff3dc1a53bfa9f29e977f731a721e4e9c16f20184cc6b2fbfb6a182"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10586-017-1085-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091046754"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10586-017-1085-z", 
      "https://app.dimensions.ai/details/publication/pub.1091046754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10586-017-1085-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1085-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1085-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1085-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-1085-z'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10586-017-1085-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne55ca306f2024f7bae231921b25a0be4
4 schema:citation sg:pub.10.1007/s00500-014-1325-6
5 sg:pub.10.1007/s00500-014-1485-4
6 sg:pub.10.1007/s10845-015-1045-5
7 https://doi.org/10.1016/j.patcog.2006.01.010
8 https://doi.org/10.1016/j.patcog.2007.03.022
9 https://doi.org/10.1016/j.patrec.2003.10.008
10 https://doi.org/10.1017/s1351324917000080
11 https://doi.org/10.1097/mat.0000000000000014
12 https://doi.org/10.1109/21.155943
13 https://doi.org/10.1109/34.862202
14 https://doi.org/10.1109/grc.2006.1635774
15 https://doi.org/10.1109/tip.2016.2594486
16 https://doi.org/10.1109/tit.1970.1054406
17 https://doi.org/10.1201/b17399-112
18 https://doi.org/10.3169/itej.69.j257
19 https://doi.org/10.3724/sp.j.1016.2011.01399
20 https://doi.org/10.5120/2220-2829
21 schema:datePublished 2017-12
22 schema:datePublishedReg 2017-12-01
23 schema:description Confidence machine learning method is an important research content in machine learning area and of significant importance to high-risk machine learning application area. In confidence machine learning, design and calculation of confidence level is a difficulty; nevertheless, the algorithm in this paper enables confidence classification even when specific threshold setting is omitted and confidence level calculation for each example and unknown sample is neglected. Based on ensemble learning structure, this algorithm employs twice one-class classifier to classify binary problems, and with reject option being set, confidence learning of binary classification is performed by means of multi-layer ensemble learning. The algorithm has been validated on eight experimental datasets, such as heart disease and diabetes mellitus, and good results have been achieved. The learning method proposed in this paper can make the confidence machine learning easier and more efficient. In the era of big data, the research of pattern recognition algorithm based on small sample is still of great significance.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nb446c658d844492a80fcec2dd0ad10ee
28 Nf04d59812acb4e15ba74a9319ef1675d
29 sg:journal.1046649
30 schema:name Study on a confidence machine learning method based on ensemble learning
31 schema:pagination 3357-3368
32 schema:productId N8e14d37b94e84a029c6be660ab749ee8
33 Ncc8b72f4a5a2461494a8c44370cee332
34 Ne7d0f71a9fbf4653a4c2a4028dae0908
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091046754
36 https://doi.org/10.1007/s10586-017-1085-z
37 schema:sdDatePublished 2019-04-11T10:01
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N62581ac55fc242c2a7aaa3d9d48be48d
40 schema:url https://link.springer.com/10.1007%2Fs10586-017-1085-z
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N62581ac55fc242c2a7aaa3d9d48be48d schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N8e14d37b94e84a029c6be660ab749ee8 schema:name dimensions_id
47 schema:value pub.1091046754
48 rdf:type schema:PropertyValue
49 Nb446c658d844492a80fcec2dd0ad10ee schema:issueNumber 4
50 rdf:type schema:PublicationIssue
51 Ncc8b72f4a5a2461494a8c44370cee332 schema:name doi
52 schema:value 10.1007/s10586-017-1085-z
53 rdf:type schema:PropertyValue
54 Ne55ca306f2024f7bae231921b25a0be4 rdf:first sg:person.07772142625.55
55 rdf:rest rdf:nil
56 Ne7d0f71a9fbf4653a4c2a4028dae0908 schema:name readcube_id
57 schema:value 1646ff627ff3dc1a53bfa9f29e977f731a721e4e9c16f20184cc6b2fbfb6a182
58 rdf:type schema:PropertyValue
59 Nf04d59812acb4e15ba74a9319ef1675d schema:volumeNumber 20
60 rdf:type schema:PublicationVolume
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1046649 schema:issn 1386-7857
68 1573-7543
69 schema:name Cluster Computing
70 rdf:type schema:Periodical
71 sg:person.07772142625.55 schema:affiliation https://www.grid.ac/institutes/grid.464441.7
72 schema:familyName Jiang
73 schema:givenName Fang Chun
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07772142625.55
75 rdf:type schema:Person
76 sg:pub.10.1007/s00500-014-1325-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018501142
77 https://doi.org/10.1007/s00500-014-1325-6
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s00500-014-1485-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012534974
80 https://doi.org/10.1007/s00500-014-1485-4
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s10845-015-1045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010275380
83 https://doi.org/10.1007/s10845-015-1045-5
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.patcog.2006.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042194503
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.patcog.2007.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013896781
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.patrec.2003.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044925653
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/s1351324917000080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084119704
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1097/mat.0000000000000014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010430199
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/21.155943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121446
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/34.862202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157108
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/grc.2006.1635774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095110507
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tip.2016.2594486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645140
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tit.1970.1054406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646711
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1201/b17399-112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021240507
106 rdf:type schema:CreativeWork
107 https://doi.org/10.3169/itej.69.j257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037868059
108 rdf:type schema:CreativeWork
109 https://doi.org/10.3724/sp.j.1016.2011.01399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071326188
110 rdf:type schema:CreativeWork
111 https://doi.org/10.5120/2220-2829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072603316
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.464441.7 schema:alternateName Shenzhen Institute of Information Technology
114 schema:name School of Computer and Information Technology, Beijing Jiaotong University, 100044, Beijing, China
115 Shenzhen Institute of Information Technology, 518172, Shenzhen, Guangdong, China
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...