Efficient iris recognition using Haralick features based extraction and fuzzy particle swarm optimization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Ravi Subban, N. Susitha, Dattatreya P. Mankame

ABSTRACT

Iris identification technology is the most versatile non-contact scanning technique, based on mathematical pattern matching. This outstanding authentication method proves its merit exceedingly well in terms of high verification speed, capability of handling large database, reliability for both 1:1 and 1:n verification mode. Iris recognition technology evaluates the unique features of iris for efficient identification or verification of identity of human beings. This biometric technique can be successfully deployed for time and attendance, surveillance, ATM, E-commerce and banking kiosks, border control mechanism, criminal identification, citizen identification, PC/network access, and so on. The distinctive and complex iris pattern has the capability for remarkably high rate of accuracy in recognition. This deployment is composed of image acquisition, image preprocessing, feature extraction, template generation, template matching and classification. Our research work applies improved techniques for optimal iris recognition. Weight sampled geodesic active contours technique efficiently segments the edges of iris. Besides Haralick feature extraction method extracts the key features of iris. Optimized feature selection is carried out by fuzzy controlled particle swarm optimization, inspired by biological evolution and swarming intelligence. Relevance vector machine, a machine learning technique superior than traditional support vector machines performs much better probabilistic supervised classification. The experiments with CASIA version 3 dataset of iris images proves the proposed methods overweigh the existing methods in terms of accuracy, processing time, specificity and sensitivity. More... »

PAGES

1-12

References to SciGraph publications

  • 2015-12. Determining diabetes using iris recognition system in INTERNATIONAL JOURNAL OF DIABETES IN DEVELOPING COUNTRIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10586-017-0934-0

    DOI

    http://dx.doi.org/10.1007/s10586-017-0934-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085720780


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Pondicherry University", 
              "id": "https://www.grid.ac/institutes/grid.412517.4", 
              "name": [
                "Pondicherry University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Subban", 
            "givenName": "Ravi", 
            "id": "sg:person.07363613612.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07363613612.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mother Teresa Women's University", 
              "id": "https://www.grid.ac/institutes/grid.411850.9", 
              "name": [
                "Mother Teresa Women\u2019s University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Susitha", 
            "givenName": "N.", 
            "id": "sg:person.012577403026.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577403026.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "KLE Institute of Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mankame", 
            "givenName": "Dattatreya P.", 
            "id": "sg:person.016707404763.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707404763.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cviu.2007.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011403285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2015.03.135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025958445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dsp.2012.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028331848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.11.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037462852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13410-015-0296-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052285338", 
              "https://doi.org/10.1007/s13410-015-0296-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.244676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.628669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2012.2188809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2003.1251145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061792707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2007.903540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2008.2009770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2008.922059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15662/ijareeie.2014.0307020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068026594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/jcssp.2012.2106.2111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071461424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.2262607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085103174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icnn.1995.488968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093669333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ccst.2001.962844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093774491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iciap.2007.4362749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095094908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icmlc.2003.1259933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095150987"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-03", 
        "datePublishedReg": "2018-03-01", 
        "description": "Iris identification technology is the most versatile non-contact scanning technique, based on mathematical pattern matching. This outstanding authentication method proves its merit exceedingly well in terms of high verification speed, capability of handling large database, reliability for both 1:1 and 1:n verification mode. Iris recognition technology evaluates the unique features of iris for efficient identification or verification of identity of human beings. This biometric technique can be successfully deployed for time and attendance, surveillance, ATM, E-commerce and banking kiosks, border control mechanism, criminal identification, citizen identification, PC/network access, and so on. The distinctive and complex iris pattern has the capability for remarkably high rate of accuracy in recognition. This deployment is composed of image acquisition, image preprocessing, feature extraction, template generation, template matching and classification. Our research work applies improved techniques for optimal iris recognition. Weight sampled geodesic active contours technique efficiently segments the edges of iris. Besides Haralick feature extraction method extracts the key features of iris. Optimized feature selection is carried out by fuzzy controlled particle swarm optimization, inspired by biological evolution and swarming intelligence. Relevance vector machine, a machine learning technique superior than traditional support vector machines performs much better probabilistic supervised classification. The experiments with CASIA version 3 dataset of iris images proves the proposed methods overweigh the existing methods in terms of accuracy, processing time, specificity and sensitivity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10586-017-0934-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1046649", 
            "issn": [
              "1386-7857", 
              "1573-7543"
            ], 
            "name": "Cluster Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "Efficient iris recognition using Haralick features based extraction and fuzzy particle swarm optimization", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "67b067c7ec634e5f452c80b8cb81ba42a3c72db23475950e07b6024557a15b66"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10586-017-0934-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085720780"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10586-017-0934-0", 
          "https://app.dimensions.ai/details/publication/pub.1085720780"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000600.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10586-017-0934-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0934-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0934-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0934-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0934-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10586-017-0934-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc3275e47b58d4fcba2834278eb8d30ea
    4 schema:citation sg:pub.10.1007/s13410-015-0296-1
    5 https://doi.org/10.1016/j.cviu.2007.08.005
    6 https://doi.org/10.1016/j.dsp.2012.06.001
    7 https://doi.org/10.1016/j.eswa.2010.11.029
    8 https://doi.org/10.1016/j.procs.2015.03.135
    9 https://doi.org/10.1109/34.244676
    10 https://doi.org/10.1109/5.628669
    11 https://doi.org/10.1109/ccst.2001.962844
    12 https://doi.org/10.1109/iciap.2007.4362749
    13 https://doi.org/10.1109/icmlc.2003.1259933
    14 https://doi.org/10.1109/icnn.1995.488968
    15 https://doi.org/10.1109/tip.2012.2188809
    16 https://doi.org/10.1109/tpami.2003.1251145
    17 https://doi.org/10.1109/tsmc.1973.4309314
    18 https://doi.org/10.1109/tsmcb.2007.903540
    19 https://doi.org/10.1109/tsmcb.2008.2009770
    20 https://doi.org/10.1109/tsmcb.2008.922059
    21 https://doi.org/10.1117/12.2262607
    22 https://doi.org/10.15662/ijareeie.2014.0307020
    23 https://doi.org/10.3844/jcssp.2012.2106.2111
    24 schema:datePublished 2018-03
    25 schema:datePublishedReg 2018-03-01
    26 schema:description Iris identification technology is the most versatile non-contact scanning technique, based on mathematical pattern matching. This outstanding authentication method proves its merit exceedingly well in terms of high verification speed, capability of handling large database, reliability for both 1:1 and 1:n verification mode. Iris recognition technology evaluates the unique features of iris for efficient identification or verification of identity of human beings. This biometric technique can be successfully deployed for time and attendance, surveillance, ATM, E-commerce and banking kiosks, border control mechanism, criminal identification, citizen identification, PC/network access, and so on. The distinctive and complex iris pattern has the capability for remarkably high rate of accuracy in recognition. This deployment is composed of image acquisition, image preprocessing, feature extraction, template generation, template matching and classification. Our research work applies improved techniques for optimal iris recognition. Weight sampled geodesic active contours technique efficiently segments the edges of iris. Besides Haralick feature extraction method extracts the key features of iris. Optimized feature selection is carried out by fuzzy controlled particle swarm optimization, inspired by biological evolution and swarming intelligence. Relevance vector machine, a machine learning technique superior than traditional support vector machines performs much better probabilistic supervised classification. The experiments with CASIA version 3 dataset of iris images proves the proposed methods overweigh the existing methods in terms of accuracy, processing time, specificity and sensitivity.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N5c6db116255b4889abfe2b5589b927e2
    31 Ne91114fbb7b24b878de7d35667a7cd0b
    32 sg:journal.1046649
    33 schema:name Efficient iris recognition using Haralick features based extraction and fuzzy particle swarm optimization
    34 schema:pagination 1-12
    35 schema:productId N6127f7d4498d4170b3b6db9c513d8b7e
    36 N78e5b7c28cd14ae5b374097efd129c3f
    37 Ne41d151ebf964b088797368741cb3109
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085720780
    39 https://doi.org/10.1007/s10586-017-0934-0
    40 schema:sdDatePublished 2019-04-10T13:31
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nd71dde3ba5df47d7a3334cd231f9056a
    43 schema:url http://link.springer.com/10.1007/s10586-017-0934-0
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N1f0b3b69d52547dd867a01db1a7ed473 schema:name KLE Institute of Technology
    48 rdf:type schema:Organization
    49 N5c6db116255b4889abfe2b5589b927e2 schema:issueNumber 1
    50 rdf:type schema:PublicationIssue
    51 N5eb4dcdc39864929be3482a23663897d rdf:first sg:person.012577403026.39
    52 rdf:rest Nfb36196646844216b7bd8fdc80154f8d
    53 N6127f7d4498d4170b3b6db9c513d8b7e schema:name dimensions_id
    54 schema:value pub.1085720780
    55 rdf:type schema:PropertyValue
    56 N78e5b7c28cd14ae5b374097efd129c3f schema:name readcube_id
    57 schema:value 67b067c7ec634e5f452c80b8cb81ba42a3c72db23475950e07b6024557a15b66
    58 rdf:type schema:PropertyValue
    59 Nc3275e47b58d4fcba2834278eb8d30ea rdf:first sg:person.07363613612.24
    60 rdf:rest N5eb4dcdc39864929be3482a23663897d
    61 Nd71dde3ba5df47d7a3334cd231f9056a schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Ne41d151ebf964b088797368741cb3109 schema:name doi
    64 schema:value 10.1007/s10586-017-0934-0
    65 rdf:type schema:PropertyValue
    66 Ne91114fbb7b24b878de7d35667a7cd0b schema:volumeNumber 21
    67 rdf:type schema:PublicationVolume
    68 Nfb36196646844216b7bd8fdc80154f8d rdf:first sg:person.016707404763.46
    69 rdf:rest rdf:nil
    70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Information and Computing Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Artificial Intelligence and Image Processing
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1046649 schema:issn 1386-7857
    77 1573-7543
    78 schema:name Cluster Computing
    79 rdf:type schema:Periodical
    80 sg:person.012577403026.39 schema:affiliation https://www.grid.ac/institutes/grid.411850.9
    81 schema:familyName Susitha
    82 schema:givenName N.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577403026.39
    84 rdf:type schema:Person
    85 sg:person.016707404763.46 schema:affiliation N1f0b3b69d52547dd867a01db1a7ed473
    86 schema:familyName Mankame
    87 schema:givenName Dattatreya P.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707404763.46
    89 rdf:type schema:Person
    90 sg:person.07363613612.24 schema:affiliation https://www.grid.ac/institutes/grid.412517.4
    91 schema:familyName Subban
    92 schema:givenName Ravi
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07363613612.24
    94 rdf:type schema:Person
    95 sg:pub.10.1007/s13410-015-0296-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052285338
    96 https://doi.org/10.1007/s13410-015-0296-1
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/j.cviu.2007.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011403285
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/j.dsp.2012.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028331848
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.eswa.2010.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037462852
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.procs.2015.03.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025958445
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1109/34.244676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155886
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/5.628669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179791
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1109/ccst.2001.962844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093774491
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1109/iciap.2007.4362749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095094908
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/icmlc.2003.1259933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095150987
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/tip.2012.2188809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643155
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/tpami.2003.1251145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742602
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/tsmcb.2007.903540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796776
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/tsmcb.2008.2009770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796918
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/tsmcb.2008.922059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796966
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1117/12.2262607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085103174
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.15662/ijareeie.2014.0307020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068026594
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.3844/jcssp.2012.2106.2111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071461424
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.411850.9 schema:alternateName Mother Teresa Women's University
    137 schema:name Mother Teresa Women’s University
    138 rdf:type schema:Organization
    139 https://www.grid.ac/institutes/grid.412517.4 schema:alternateName Pondicherry University
    140 schema:name Pondicherry University
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...