Semantic classification method for network Tibetan corpus View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Gui-Xian Xu, Chang-Zhi Wang, Li-Hui Wang, Yu-Hong Zhou, Wei-Kang Li, Hao Xu, Qing Huang

ABSTRACT

Tibetan web pages appear enormously. It is meaningful that the information processing technology is utilized to find the useful knowledge from the Tibetan web information. Tibetan semantic ontology can enrich the Tibetan digital resource and is helpful to improve the information processing performance. In this paper, semantic classification of Tibetan network corpus is studied. Firstly Tibetan web pages are collected. Secondly preprocessing is conducted to extract the useful information from Web pages. Thirdly the word segmentation and text representation are introduced. Finally the text similarity classification algorithm is proposed to classify the text. During the experiment, the comparison between semantic classification and non semantic classification is conducted. The results show that the semantic classification performance is obviously superior to non semantic classification. This means that making full use of ontology semantic relationship can greatly enhance the classification accuracy. The research is useful and helpful to the study of Tibetan semantic information processing. More... »

PAGES

155-165

References to SciGraph publications

  • 2012-05. Survey on mining subjective data on the web in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2016-12. Modeling and analyzing interference signal in a complex electromagnetic environment in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10586-017-0742-6

    DOI

    http://dx.doi.org/10.1007/s10586-017-0742-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053814668


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Minzu University of China", 
              "id": "https://www.grid.ac/institutes/grid.411077.4", 
              "name": [
                "Information Engineering College, Minzu University of China, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Gui-Xian", 
            "id": "sg:person.011747311776.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747311776.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Minzu University of China", 
              "id": "https://www.grid.ac/institutes/grid.411077.4", 
              "name": [
                "Information Engineering College, Minzu University of China, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Chang-Zhi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "School of Electronic Engineering and Computer Science, Peking University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Li-Hui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "College of Software Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yu-Hong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Minzu University of China", 
              "id": "https://www.grid.ac/institutes/grid.411077.4", 
              "name": [
                "Information Engineering College, Minzu University of China, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Wei-Kang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Minzu University of China", 
              "id": "https://www.grid.ac/institutes/grid.411077.4", 
              "name": [
                "Information Engineering College, Minzu University of China, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Hao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Minzu University of China", 
              "id": "https://www.grid.ac/institutes/grid.411077.4", 
              "name": [
                "Information Engineering College, Minzu University of China, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Qing", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.patcog.2006.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004116882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.datak.2009.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006279484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-015-0498-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023474408", 
              "https://doi.org/10.1186/s13638-015-0498-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-015-0498-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023474408", 
              "https://doi.org/10.1186/s13638-015-0498-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-011-0238-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028086968", 
              "https://doi.org/10.1007/s10618-011-0238-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/509907.509965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030416589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1389-1286(99)00047-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034663825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijleo.2016.02.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037141832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1016.2011.00856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071326143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1077.2011.00097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071331235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078348468", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icinis.2011.7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094376948"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03", 
        "datePublishedReg": "2017-03-01", 
        "description": "Tibetan web pages appear enormously. It is meaningful that the information processing technology is utilized to find the useful knowledge from the Tibetan web information. Tibetan semantic ontology can enrich the Tibetan digital resource and is helpful to improve the information processing performance. In this paper, semantic classification of Tibetan network corpus is studied. Firstly Tibetan web pages are collected. Secondly preprocessing is conducted to extract the useful information from Web pages. Thirdly the word segmentation and text representation are introduced. Finally the text similarity classification algorithm is proposed to classify the text. During the experiment, the comparison between semantic classification and non semantic classification is conducted. The results show that the semantic classification performance is obviously superior to non semantic classification. This means that making full use of ontology semantic relationship can greatly enhance the classification accuracy. The research is useful and helpful to the study of Tibetan semantic information processing.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10586-017-0742-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1046649", 
            "issn": [
              "1386-7857", 
              "1573-7543"
            ], 
            "name": "Cluster Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Semantic classification method for network Tibetan corpus", 
        "pagination": "155-165", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "32dfd1ae697d041b58e0732978e74e5ebcb53c21a67eba3c50d423c18e7abeb6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10586-017-0742-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053814668"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10586-017-0742-6", 
          "https://app.dimensions.ai/details/publication/pub.1053814668"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10586-017-0742-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0742-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0742-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0742-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10586-017-0742-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10586-017-0742-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nd39db39ccfe34ba59e98f6799057e7e8
    4 schema:citation sg:pub.10.1007/s10618-011-0238-6
    5 sg:pub.10.1186/s13638-015-0498-8
    6 https://app.dimensions.ai/details/publication/pub.1078348468
    7 https://doi.org/10.1016/j.datak.2009.04.002
    8 https://doi.org/10.1016/j.ijleo.2016.02.074
    9 https://doi.org/10.1016/j.patcog.2006.09.017
    10 https://doi.org/10.1016/s1389-1286(99)00047-x
    11 https://doi.org/10.1109/icinis.2011.7
    12 https://doi.org/10.1145/509907.509965
    13 https://doi.org/10.3724/sp.j.1016.2011.00856
    14 https://doi.org/10.3724/sp.j.1077.2011.00097
    15 schema:datePublished 2017-03
    16 schema:datePublishedReg 2017-03-01
    17 schema:description Tibetan web pages appear enormously. It is meaningful that the information processing technology is utilized to find the useful knowledge from the Tibetan web information. Tibetan semantic ontology can enrich the Tibetan digital resource and is helpful to improve the information processing performance. In this paper, semantic classification of Tibetan network corpus is studied. Firstly Tibetan web pages are collected. Secondly preprocessing is conducted to extract the useful information from Web pages. Thirdly the word segmentation and text representation are introduced. Finally the text similarity classification algorithm is proposed to classify the text. During the experiment, the comparison between semantic classification and non semantic classification is conducted. The results show that the semantic classification performance is obviously superior to non semantic classification. This means that making full use of ontology semantic relationship can greatly enhance the classification accuracy. The research is useful and helpful to the study of Tibetan semantic information processing.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf Nc6184897335c4e1cbc0c584bcb607c51
    22 Ne23e06ba1e5a48009df918ecb3968507
    23 sg:journal.1046649
    24 schema:name Semantic classification method for network Tibetan corpus
    25 schema:pagination 155-165
    26 schema:productId N545c4ddfa1ae4bcfb6d74a0a04c6cb56
    27 N6dbd852424134f7aa42b20c209ad1f58
    28 N986eee59fa514696b04327a3336a606d
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053814668
    30 https://doi.org/10.1007/s10586-017-0742-6
    31 schema:sdDatePublished 2019-04-11T09:31
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N086f45a4b76c44f881f1f2ff604fe05f
    34 schema:url https://link.springer.com/10.1007%2Fs10586-017-0742-6
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N086f45a4b76c44f881f1f2ff604fe05f schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N19a59ce463794d608a453f5c2ded2ec2 rdf:first Nfd9f8084c1df4520b7657eaf439b10d6
    41 rdf:rest N826f77bdb8204fdc8cb5394ce8860b54
    42 N2e7264e75d18405fb99c15c333edc325 schema:affiliation https://www.grid.ac/institutes/grid.411077.4
    43 schema:familyName Xu
    44 schema:givenName Hao
    45 rdf:type schema:Person
    46 N49a05a1847a946c3b9265529d0c7e49b schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    47 schema:familyName Wang
    48 schema:givenName Li-Hui
    49 rdf:type schema:Person
    50 N4f53aed151bd4e0b981d0ff2c146210a schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    51 schema:familyName Zhou
    52 schema:givenName Yu-Hong
    53 rdf:type schema:Person
    54 N52e3b39be72541b58728e9496abac8de rdf:first N5f8275d50ed445da8c18214295a43391
    55 rdf:rest N845399a391b0440aba313b99e3d8452f
    56 N545c4ddfa1ae4bcfb6d74a0a04c6cb56 schema:name dimensions_id
    57 schema:value pub.1053814668
    58 rdf:type schema:PropertyValue
    59 N5f8275d50ed445da8c18214295a43391 schema:affiliation https://www.grid.ac/institutes/grid.411077.4
    60 schema:familyName Li
    61 schema:givenName Wei-Kang
    62 rdf:type schema:Person
    63 N66945afe91264e39ac512316122211a6 schema:affiliation https://www.grid.ac/institutes/grid.411077.4
    64 schema:familyName Huang
    65 schema:givenName Qing
    66 rdf:type schema:Person
    67 N6dbd852424134f7aa42b20c209ad1f58 schema:name readcube_id
    68 schema:value 32dfd1ae697d041b58e0732978e74e5ebcb53c21a67eba3c50d423c18e7abeb6
    69 rdf:type schema:PropertyValue
    70 N826f77bdb8204fdc8cb5394ce8860b54 rdf:first N49a05a1847a946c3b9265529d0c7e49b
    71 rdf:rest Nb0d3fb273c0a43d3b03ddc2882db0d70
    72 N845399a391b0440aba313b99e3d8452f rdf:first N2e7264e75d18405fb99c15c333edc325
    73 rdf:rest N89d4a1b679cf4674a92c8c3bc105de46
    74 N89d4a1b679cf4674a92c8c3bc105de46 rdf:first N66945afe91264e39ac512316122211a6
    75 rdf:rest rdf:nil
    76 N986eee59fa514696b04327a3336a606d schema:name doi
    77 schema:value 10.1007/s10586-017-0742-6
    78 rdf:type schema:PropertyValue
    79 Nb0d3fb273c0a43d3b03ddc2882db0d70 rdf:first N4f53aed151bd4e0b981d0ff2c146210a
    80 rdf:rest N52e3b39be72541b58728e9496abac8de
    81 Nc6184897335c4e1cbc0c584bcb607c51 schema:volumeNumber 20
    82 rdf:type schema:PublicationVolume
    83 Nd39db39ccfe34ba59e98f6799057e7e8 rdf:first sg:person.011747311776.65
    84 rdf:rest N19a59ce463794d608a453f5c2ded2ec2
    85 Ne23e06ba1e5a48009df918ecb3968507 schema:issueNumber 1
    86 rdf:type schema:PublicationIssue
    87 Nfd9f8084c1df4520b7657eaf439b10d6 schema:affiliation https://www.grid.ac/institutes/grid.411077.4
    88 schema:familyName Wang
    89 schema:givenName Chang-Zhi
    90 rdf:type schema:Person
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Artificial Intelligence and Image Processing
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1046649 schema:issn 1386-7857
    98 1573-7543
    99 schema:name Cluster Computing
    100 rdf:type schema:Periodical
    101 sg:person.011747311776.65 schema:affiliation https://www.grid.ac/institutes/grid.411077.4
    102 schema:familyName Xu
    103 schema:givenName Gui-Xian
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747311776.65
    105 rdf:type schema:Person
    106 sg:pub.10.1007/s10618-011-0238-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028086968
    107 https://doi.org/10.1007/s10618-011-0238-6
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1186/s13638-015-0498-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023474408
    110 https://doi.org/10.1186/s13638-015-0498-8
    111 rdf:type schema:CreativeWork
    112 https://app.dimensions.ai/details/publication/pub.1078348468 schema:CreativeWork
    113 https://doi.org/10.1016/j.datak.2009.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006279484
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.ijleo.2016.02.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037141832
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.patcog.2006.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004116882
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s1389-1286(99)00047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034663825
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/icinis.2011.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094376948
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1145/509907.509965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030416589
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.3724/sp.j.1016.2011.00856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071326143
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.3724/sp.j.1077.2011.00097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071331235
    128 rdf:type schema:CreativeWork
    129 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
    130 schema:name School of Electronic Engineering and Computer Science, Peking University, Beijing, China
    131 rdf:type schema:Organization
    132 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    133 schema:name College of Software Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
    134 rdf:type schema:Organization
    135 https://www.grid.ac/institutes/grid.411077.4 schema:alternateName Minzu University of China
    136 schema:name Information Engineering College, Minzu University of China, Beijing, China
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...