SLA-aware data migration in a shared hybrid storage cluster View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

Jianzhe Tai, Bo Sheng, Yi Yao, Ningfang Mi

ABSTRACT

Data volume in today’s world has been tremendously increased. Large-scaled and diverse data sets are raising new big challenges of storage, process, and query. Particularly, real-time data analysis becomes more and more frequently. Multi-tiered, hybrid storage architectures, which provide a solid way to combine solid-state drives with hard disk drives (HDDs), therefore become attractive in enterprise data centers for achieving high performance and large capacity simultaneously. However, from service provider’s perspective, how to efficiently manage all the data hosted in data center in order to provide high quality of service (QoS) is still a core and difficult problem. The modern enterprise data centers often provide the shared storage resources to a large variety of applications which might demand for different service level agreements (SLAs). Furthermore, any user query from a data-intensive application could easily trigger a scan of a gigantic data set and inject a burst of disk I/Os to the back-end storage system, which will eventually cause disastrous performance degradation. Therefore, in the paper, we present a new approach for automated data movement in multi-tiered, hybrid storage clusters, which lively migrates the data among different storage media devices, aiming to support multiple SLAs for applications with dynamic workloads at the minimal cost. Detailed trace-driven simulations show that this new approach significantly improves the overall performance, providing higher QoS for applications and reducing the occurrence of SLA violations. Sensitivity analysis under different system environments further validates the effectiveness and robustness of the approach. More... »

PAGES

1581-1593

References to SciGraph publications

  • 2001-08-17. An Experimental Study of Data Migration Algorithms in ALGORITHM ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10586-015-0461-9

    DOI

    http://dx.doi.org/10.1007/s10586-015-0461-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026270156


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.261112.7", 
              "name": [
                "Northeastern University, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tai", 
            "givenName": "Jianzhe", 
            "id": "sg:person.016671363643.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016671363643.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Boston", 
              "id": "https://www.grid.ac/institutes/grid.266685.9", 
              "name": [
                "University of Massachusetts Boston, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sheng", 
            "givenName": "Bo", 
            "id": "sg:person.011762156103.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011762156103.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.261112.7", 
              "name": [
                "Northeastern University, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Yi", 
            "id": "sg:person.016331760073.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016331760073.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northeastern University", 
              "id": "https://www.grid.ac/institutes/grid.261112.7", 
              "name": [
                "Northeastern University, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mi", 
            "givenName": "Ningfang", 
            "id": "sg:person.016306120723.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016306120723.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1416944.1416949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017656091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/773153.773156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019963811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1989323.1989356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022677624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44688-5_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025723378", 
              "https://doi.org/10.1007/3-540-44688-5_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44688-5_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025723378", 
              "https://doi.org/10.1007/3-540-44688-5_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1084779.1084781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047708069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2318857.2254815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063161270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.9.3.383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064731999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icac.2006.1662416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094786634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/qest.2006.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094983946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cloud.2010.60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095047015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iwqos.2004.1309358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095119722"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "Data volume in today\u2019s world has been tremendously increased. Large-scaled and diverse data sets are raising new big challenges of storage, process, and query. Particularly, real-time data analysis becomes more and more frequently. Multi-tiered, hybrid storage architectures, which provide a solid way to combine solid-state drives with hard disk drives (HDDs), therefore become attractive in enterprise data centers for achieving high performance and large capacity simultaneously. However, from service provider\u2019s perspective, how to efficiently manage all the data hosted in data center in order to provide high quality of service (QoS) is still a core and difficult problem. The modern enterprise data centers often provide the shared storage resources to a large variety of applications which might demand for different service level agreements (SLAs). Furthermore, any user query from a data-intensive application could easily trigger a scan of a gigantic data set and inject a burst of disk I/Os to the back-end storage system, which will eventually cause disastrous performance degradation. Therefore, in the paper, we present a new approach for automated data movement in multi-tiered, hybrid storage clusters, which lively migrates the data among different storage media devices, aiming to support multiple SLAs for applications with dynamic workloads at the minimal cost. Detailed trace-driven simulations show that this new approach significantly improves the overall performance, providing higher QoS for applications and reducing the occurrence of SLA violations. Sensitivity analysis under different system environments further validates the effectiveness and robustness of the approach.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10586-015-0461-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3145971", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1046649", 
            "issn": [
              "1386-7857", 
              "1573-7543"
            ], 
            "name": "Cluster Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "SLA-aware data migration in a shared hybrid storage cluster", 
        "pagination": "1581-1593", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7d25f7330aacd145d1f9f32e06b0ca6d5268de3fadb5596ad53815c7ea87098d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10586-015-0461-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026270156"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10586-015-0461-9", 
          "https://app.dimensions.ai/details/publication/pub.1026270156"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10586-015-0461-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10586-015-0461-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10586-015-0461-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10586-015-0461-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10586-015-0461-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10586-015-0461-9 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N48ec08c8c2144033855ecf33884b612c
    4 schema:citation sg:pub.10.1007/3-540-44688-5_12
    5 https://doi.org/10.1109/cloud.2010.60
    6 https://doi.org/10.1109/icac.2006.1662416
    7 https://doi.org/10.1109/iwqos.2004.1309358
    8 https://doi.org/10.1109/qest.2006.27
    9 https://doi.org/10.1145/1084779.1084781
    10 https://doi.org/10.1145/1416944.1416949
    11 https://doi.org/10.1145/1989323.1989356
    12 https://doi.org/10.1145/2318857.2254815
    13 https://doi.org/10.1145/773153.773156
    14 https://doi.org/10.1287/opre.9.3.383
    15 schema:datePublished 2015-12
    16 schema:datePublishedReg 2015-12-01
    17 schema:description Data volume in today’s world has been tremendously increased. Large-scaled and diverse data sets are raising new big challenges of storage, process, and query. Particularly, real-time data analysis becomes more and more frequently. Multi-tiered, hybrid storage architectures, which provide a solid way to combine solid-state drives with hard disk drives (HDDs), therefore become attractive in enterprise data centers for achieving high performance and large capacity simultaneously. However, from service provider’s perspective, how to efficiently manage all the data hosted in data center in order to provide high quality of service (QoS) is still a core and difficult problem. The modern enterprise data centers often provide the shared storage resources to a large variety of applications which might demand for different service level agreements (SLAs). Furthermore, any user query from a data-intensive application could easily trigger a scan of a gigantic data set and inject a burst of disk I/Os to the back-end storage system, which will eventually cause disastrous performance degradation. Therefore, in the paper, we present a new approach for automated data movement in multi-tiered, hybrid storage clusters, which lively migrates the data among different storage media devices, aiming to support multiple SLAs for applications with dynamic workloads at the minimal cost. Detailed trace-driven simulations show that this new approach significantly improves the overall performance, providing higher QoS for applications and reducing the occurrence of SLA violations. Sensitivity analysis under different system environments further validates the effectiveness and robustness of the approach.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N495fbf93e6ea436a8fb6ce22b6613167
    22 N66af45500a1349969963c1e84a1c8a48
    23 sg:journal.1046649
    24 schema:name SLA-aware data migration in a shared hybrid storage cluster
    25 schema:pagination 1581-1593
    26 schema:productId N600015c5e1ef48a984ebfe69dd926b9f
    27 Nc02ff788dbef49078db90df5e6d20b02
    28 Nd84792fff53e40538e00c220d2752fd2
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026270156
    30 https://doi.org/10.1007/s10586-015-0461-9
    31 schema:sdDatePublished 2019-04-11T01:07
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N271a25ba83904ac7909941de7b8251a0
    34 schema:url http://link.springer.com/10.1007%2Fs10586-015-0461-9
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N038e3d3ce02a41d1b7d7240c33049269 rdf:first sg:person.011762156103.37
    39 rdf:rest Nfb1e390096d04528adcb413269f6d723
    40 N271a25ba83904ac7909941de7b8251a0 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N48ec08c8c2144033855ecf33884b612c rdf:first sg:person.016671363643.54
    43 rdf:rest N038e3d3ce02a41d1b7d7240c33049269
    44 N495fbf93e6ea436a8fb6ce22b6613167 schema:issueNumber 4
    45 rdf:type schema:PublicationIssue
    46 N600015c5e1ef48a984ebfe69dd926b9f schema:name dimensions_id
    47 schema:value pub.1026270156
    48 rdf:type schema:PropertyValue
    49 N66af45500a1349969963c1e84a1c8a48 schema:volumeNumber 18
    50 rdf:type schema:PublicationVolume
    51 Nbc0abd798c31409e8c5c848e7fbd8f98 rdf:first sg:person.016306120723.16
    52 rdf:rest rdf:nil
    53 Nc02ff788dbef49078db90df5e6d20b02 schema:name readcube_id
    54 schema:value 7d25f7330aacd145d1f9f32e06b0ca6d5268de3fadb5596ad53815c7ea87098d
    55 rdf:type schema:PropertyValue
    56 Nd84792fff53e40538e00c220d2752fd2 schema:name doi
    57 schema:value 10.1007/s10586-015-0461-9
    58 rdf:type schema:PropertyValue
    59 Nfb1e390096d04528adcb413269f6d723 rdf:first sg:person.016331760073.02
    60 rdf:rest Nbc0abd798c31409e8c5c848e7fbd8f98
    61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Information and Computing Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Information Systems
    66 rdf:type schema:DefinedTerm
    67 sg:grant.3145971 http://pending.schema.org/fundedItem sg:pub.10.1007/s10586-015-0461-9
    68 rdf:type schema:MonetaryGrant
    69 sg:journal.1046649 schema:issn 1386-7857
    70 1573-7543
    71 schema:name Cluster Computing
    72 rdf:type schema:Periodical
    73 sg:person.011762156103.37 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
    74 schema:familyName Sheng
    75 schema:givenName Bo
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011762156103.37
    77 rdf:type schema:Person
    78 sg:person.016306120723.16 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
    79 schema:familyName Mi
    80 schema:givenName Ningfang
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016306120723.16
    82 rdf:type schema:Person
    83 sg:person.016331760073.02 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
    84 schema:familyName Yao
    85 schema:givenName Yi
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016331760073.02
    87 rdf:type schema:Person
    88 sg:person.016671363643.54 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
    89 schema:familyName Tai
    90 schema:givenName Jianzhe
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016671363643.54
    92 rdf:type schema:Person
    93 sg:pub.10.1007/3-540-44688-5_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025723378
    94 https://doi.org/10.1007/3-540-44688-5_12
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1109/cloud.2010.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095047015
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1109/icac.2006.1662416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094786634
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1109/iwqos.2004.1309358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095119722
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/qest.2006.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094983946
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1145/1084779.1084781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047708069
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1145/1416944.1416949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017656091
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1145/1989323.1989356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677624
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1145/2318857.2254815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063161270
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1145/773153.773156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019963811
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1287/opre.9.3.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731999
    115 rdf:type schema:CreativeWork
    116 https://www.grid.ac/institutes/grid.261112.7 schema:alternateName Northeastern University
    117 schema:name Northeastern University, Boston, MA, USA
    118 rdf:type schema:Organization
    119 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
    120 schema:name University of Massachusetts Boston, Boston, MA, USA
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...