Effect of altitude on climate–growth relationships of Chinese white pine (Pinus armandii) in the northern Funiu Mountain, central China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Jianfeng Peng, Jinbao Li, Ting Wang, Jiaxin Huo, Liu Yang

ABSTRACT

We developed three tree-ring width chronologies of Chinese white pine (Pinus armandii) along an altitudinal gradient on the same slope of the northern Funiu Mountain, central China. Chronological statistics indicate that there are higher mean sensitivity (M.S.) and standard deviation (S.D.) at high-altitude site while higher signal-to-noise ratio (SNR) and expressed population signal (EPS) at low-altitude site. Correlation analyses between chronologies and climate factors indicate that temperature is the main limiting factor, and discrepant response on tree growth exists at different altitudes. Mean and maximum temperatures in May have significant negative correlations with tree growth at mid and high altitudes, while all temperatures in April show significant positive correlations at high altitude and minimum temperature in August shows significant positive correlation at low-altitude site. It is evident that the limit of temperatures in April and May to tree growth strengthened with increasing altitude. Tree growth also shows significant positive correlations with precipitation in May at high altitude, with precipitation from prior December to current February and scPDSI (self-calibrating Palmer Drought Severity Index) from prior July to current February and May at mid altitude and relative humidity in February and June and scPDSI in current June at low-altitude site. Stability of climate–growth responses by moving correlation analyses shows continuous significant negative correlations with mean and maximum temperature in May and significant positive correlation with precipitation in May at high and low altitudes since 2000 but discontinuously significant negative correlation with precipitation in July–September before 2003 and discontinuously significant positive correlation with precipitation from prior December to current February after 1995. The strong significant positive correlations with scPDSI from prior November to current June since 1990 may indicate that temperature had induced drought stress on tree radial growth at mid-altitude site. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-019-02416-7

DOI

http://dx.doi.org/10.1007/s10584-019-02416-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113042430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Henan University", 
          "id": "https://www.grid.ac/institutes/grid.256922.8", 
          "name": [
            "College of Environment and Planning, Henan University, 475004, Kaifeng, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Jianfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "College of Environment and Planning, Henan University, 475004, Kaifeng, China", 
            "Department of Geography, University of Hong Kong, Pokfulam, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jinbao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Henan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.108266.b", 
          "name": [
            "College of Forestry, Henan Agriculture University, 450001, Zhengzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Henan University", 
          "id": "https://www.grid.ac/institutes/grid.256922.8", 
          "name": [
            "College of Environment and Planning, Henan University, 475004, Kaifeng, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huo", 
        "givenName": "Jiaxin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Henan University", 
          "id": "https://www.grid.ac/institutes/grid.256922.8", 
          "name": [
            "College of Environment and Planning, Henan University, 475004, Kaifeng, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Liu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/jhm-386.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002081043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2003.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002153332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-012-0544-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003408368", 
          "https://doi.org/10.1007/s00484-012-0544-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x04-078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004914183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x94-017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dendro.2016.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009720486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009865164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-015-1531-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013200181", 
          "https://doi.org/10.1007/s10584-015-1531-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dendro.2007.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013378262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13595-012-0187-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014162717", 
          "https://doi.org/10.1007/s13595-012-0187-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13595-012-0187-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014162717", 
          "https://doi.org/10.1007/s13595-012-0187-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-015-1330-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016916702", 
          "https://doi.org/10.1007/s00468-015-1330-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.1995.tb00024.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023503318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0396-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030312243", 
          "https://doi.org/10.1007/978-3-0348-0396-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0396-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030312243", 
          "https://doi.org/10.1007/978-3-0348-0396-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031223967", 
          "https://doi.org/10.1038/nclimate2563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-010-4215-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037511805", 
          "https://doi.org/10.1007/s11434-010-4215-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-010-4215-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037511805", 
          "https://doi.org/10.1007/s11434-010-4215-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0163201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039164642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaridenv.2004.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045756175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-013-0951-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051936466", 
          "https://doi.org/10.1007/s00468-013-0951-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1360/n972014-00403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065073743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14214/sf.1155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067211495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr01098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071158898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/cpd-10-859-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072666723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-017-1524-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084022281", 
          "https://doi.org/10.1007/s00468-017-1524-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-017-1524-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084022281", 
          "https://doi.org/10.1007/s00468-017-1524-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10225706.2017.1325758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085621280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1616608114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086130813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bg-14-3083-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086252453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10225706.2017.1394886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092669994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dendro.2018.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101296544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2018.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105741345"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "We developed three tree-ring width chronologies of Chinese white pine (Pinus armandii) along an altitudinal gradient on the same slope of the northern Funiu Mountain, central China. Chronological statistics indicate that there are higher mean sensitivity (M.S.) and standard deviation (S.D.) at high-altitude site while higher signal-to-noise ratio (SNR) and expressed population signal (EPS) at low-altitude site. Correlation analyses between chronologies and climate factors indicate that temperature is the main limiting factor, and discrepant response on tree growth exists at different altitudes. Mean and maximum temperatures in May have significant negative correlations with tree growth at mid and high altitudes, while all temperatures in April show significant positive correlations at high altitude and minimum temperature in August shows significant positive correlation at low-altitude site. It is evident that the limit of temperatures in April and May to tree growth strengthened with increasing altitude. Tree growth also shows significant positive correlations with precipitation in May at high altitude, with precipitation from prior December to current February and scPDSI (self-calibrating Palmer Drought Severity Index) from prior July to current February and May at mid altitude and relative humidity in February and June and scPDSI in current June at low-altitude site. Stability of climate\u2013growth responses by moving correlation analyses shows continuous significant negative correlations with mean and maximum temperature in May and significant positive correlation with precipitation in May at high and low altitudes since 2000 but discontinuously significant negative correlation with precipitation in July\u2013September before 2003 and discontinuously significant positive correlation with precipitation from prior December to current February after 1995. The strong significant positive correlations with scPDSI from prior November to current June since 1990 may indicate that temperature had induced drought stress on tree radial growth at mid-altitude site.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10584-019-02416-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }
    ], 
    "name": "Effect of altitude on climate\u2013growth relationships of Chinese white pine (Pinus armandii) in the northern Funiu Mountain, central China", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d94a96097b2180f86f72a11315f026ff67f91d87a910e7ed6c82b6ce43a9189"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-019-02416-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113042430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-019-02416-7", 
      "https://app.dimensions.ai/details/publication/pub.1113042430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78944_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10584-019-02416-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-019-02416-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-019-02416-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-019-02416-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-019-02416-7'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-019-02416-7 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N63ba7f5e43d242b1becebea3c6b934ee
4 schema:citation sg:pub.10.1007/978-3-0348-0396-0
5 sg:pub.10.1007/s00468-013-0951-4
6 sg:pub.10.1007/s00468-015-1330-0
7 sg:pub.10.1007/s00468-017-1524-8
8 sg:pub.10.1007/s00484-012-0544-8
9 sg:pub.10.1007/s10584-015-1531-y
10 sg:pub.10.1007/s11434-010-4215-z
11 sg:pub.10.1007/s13595-012-0187-2
12 sg:pub.10.1038/nclimate2563
13 https://doi.org/10.1016/j.cageo.2003.11.004
14 https://doi.org/10.1016/j.dendro.2007.10.003
15 https://doi.org/10.1016/j.dendro.2016.09.002
16 https://doi.org/10.1016/j.dendro.2018.02.004
17 https://doi.org/10.1016/j.ecolind.2018.07.023
18 https://doi.org/10.1016/j.jaridenv.2004.09.011
19 https://doi.org/10.1073/pnas.1616608114
20 https://doi.org/10.1080/10225706.2017.1325758
21 https://doi.org/10.1080/10225706.2017.1394886
22 https://doi.org/10.1111/j.1365-2486.1995.tb00024.x
23 https://doi.org/10.1139/x04-078
24 https://doi.org/10.1139/x94-017
25 https://doi.org/10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2
26 https://doi.org/10.1175/jhm-386.1
27 https://doi.org/10.1360/n972014-00403
28 https://doi.org/10.1371/journal.pone.0163201
29 https://doi.org/10.14214/sf.1155
30 https://doi.org/10.3354/cr01098
31 https://doi.org/10.5194/bg-14-3083-2017
32 https://doi.org/10.5194/cpd-10-859-2014
33 schema:datePublished 2019-03-27
34 schema:datePublishedReg 2019-03-27
35 schema:description We developed three tree-ring width chronologies of Chinese white pine (Pinus armandii) along an altitudinal gradient on the same slope of the northern Funiu Mountain, central China. Chronological statistics indicate that there are higher mean sensitivity (M.S.) and standard deviation (S.D.) at high-altitude site while higher signal-to-noise ratio (SNR) and expressed population signal (EPS) at low-altitude site. Correlation analyses between chronologies and climate factors indicate that temperature is the main limiting factor, and discrepant response on tree growth exists at different altitudes. Mean and maximum temperatures in May have significant negative correlations with tree growth at mid and high altitudes, while all temperatures in April show significant positive correlations at high altitude and minimum temperature in August shows significant positive correlation at low-altitude site. It is evident that the limit of temperatures in April and May to tree growth strengthened with increasing altitude. Tree growth also shows significant positive correlations with precipitation in May at high altitude, with precipitation from prior December to current February and scPDSI (self-calibrating Palmer Drought Severity Index) from prior July to current February and May at mid altitude and relative humidity in February and June and scPDSI in current June at low-altitude site. Stability of climate–growth responses by moving correlation analyses shows continuous significant negative correlations with mean and maximum temperature in May and significant positive correlation with precipitation in May at high and low altitudes since 2000 but discontinuously significant negative correlation with precipitation in July–September before 2003 and discontinuously significant positive correlation with precipitation from prior December to current February after 1995. The strong significant positive correlations with scPDSI from prior November to current June since 1990 may indicate that temperature had induced drought stress on tree radial growth at mid-altitude site.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1028211
40 schema:name Effect of altitude on climate–growth relationships of Chinese white pine (Pinus armandii) in the northern Funiu Mountain, central China
41 schema:pagination 1-16
42 schema:productId N026ce94e3dd74c8aba8fbb6f05f88267
43 Nb2147391f7f14adab4e70a501b113d8c
44 Nd4aa7555d43d437e9f696c19de1b86c2
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113042430
46 https://doi.org/10.1007/s10584-019-02416-7
47 schema:sdDatePublished 2019-04-11T13:18
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N774921128c85488fb69e22b093a94b49
50 schema:url https://link.springer.com/10.1007%2Fs10584-019-02416-7
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N026ce94e3dd74c8aba8fbb6f05f88267 schema:name dimensions_id
55 schema:value pub.1113042430
56 rdf:type schema:PropertyValue
57 N149e157d87604adb9793558a57f64fbf schema:affiliation https://www.grid.ac/institutes/grid.194645.b
58 schema:familyName Li
59 schema:givenName Jinbao
60 rdf:type schema:Person
61 N1e56e83fd1be4c44ad2071f8bcbf4ca9 schema:affiliation https://www.grid.ac/institutes/grid.256922.8
62 schema:familyName Yang
63 schema:givenName Liu
64 rdf:type schema:Person
65 N3971a01255c049c7b8a10d014cc014ba rdf:first Nd92fe135c1fc4762932674121a0498d5
66 rdf:rest N5e72f4a9d29440d888162eb7751ff23e
67 N58505a7e8d26427196fda1a6dba71693 schema:affiliation https://www.grid.ac/institutes/grid.256922.8
68 schema:familyName Peng
69 schema:givenName Jianfeng
70 rdf:type schema:Person
71 N5c05d0d1e7614fb1b217038026443371 rdf:first N1e56e83fd1be4c44ad2071f8bcbf4ca9
72 rdf:rest rdf:nil
73 N5e72f4a9d29440d888162eb7751ff23e rdf:first Nc6c875d7f13a41f69c83f6d5f8f2a075
74 rdf:rest N5c05d0d1e7614fb1b217038026443371
75 N63ba7f5e43d242b1becebea3c6b934ee rdf:first N58505a7e8d26427196fda1a6dba71693
76 rdf:rest Nae1c5ca65de44c38a7098ca1a2d4f5e9
77 N774921128c85488fb69e22b093a94b49 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nae1c5ca65de44c38a7098ca1a2d4f5e9 rdf:first N149e157d87604adb9793558a57f64fbf
80 rdf:rest N3971a01255c049c7b8a10d014cc014ba
81 Nb2147391f7f14adab4e70a501b113d8c schema:name doi
82 schema:value 10.1007/s10584-019-02416-7
83 rdf:type schema:PropertyValue
84 Nc6c875d7f13a41f69c83f6d5f8f2a075 schema:affiliation https://www.grid.ac/institutes/grid.256922.8
85 schema:familyName Huo
86 schema:givenName Jiaxin
87 rdf:type schema:Person
88 Nd4aa7555d43d437e9f696c19de1b86c2 schema:name readcube_id
89 schema:value 2d94a96097b2180f86f72a11315f026ff67f91d87a910e7ed6c82b6ce43a9189
90 rdf:type schema:PropertyValue
91 Nd92fe135c1fc4762932674121a0498d5 schema:affiliation https://www.grid.ac/institutes/grid.108266.b
92 schema:familyName Wang
93 schema:givenName Ting
94 rdf:type schema:Person
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
99 schema:name Plant Biology
100 rdf:type schema:DefinedTerm
101 sg:journal.1028211 schema:issn 0165-0009
102 1573-1480
103 schema:name Climatic Change
104 rdf:type schema:Periodical
105 sg:pub.10.1007/978-3-0348-0396-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030312243
106 https://doi.org/10.1007/978-3-0348-0396-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00468-013-0951-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051936466
109 https://doi.org/10.1007/s00468-013-0951-4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00468-015-1330-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916702
112 https://doi.org/10.1007/s00468-015-1330-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00468-017-1524-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084022281
115 https://doi.org/10.1007/s00468-017-1524-8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00484-012-0544-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003408368
118 https://doi.org/10.1007/s00484-012-0544-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10584-015-1531-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013200181
121 https://doi.org/10.1007/s10584-015-1531-y
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11434-010-4215-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037511805
124 https://doi.org/10.1007/s11434-010-4215-z
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s13595-012-0187-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014162717
127 https://doi.org/10.1007/s13595-012-0187-2
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nclimate2563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031223967
130 https://doi.org/10.1038/nclimate2563
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cageo.2003.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002153332
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.dendro.2007.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013378262
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.dendro.2016.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009720486
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.dendro.2018.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101296544
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ecolind.2018.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105741345
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jaridenv.2004.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045756175
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.1616608114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086130813
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/10225706.2017.1325758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085621280
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/10225706.2017.1394886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092669994
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1365-2486.1995.tb00024.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023503318
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1139/x04-078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004914183
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1139/x94-017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005983913
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009865164
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1175/jhm-386.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002081043
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1360/n972014-00403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065073743
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1371/journal.pone.0163201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039164642
163 rdf:type schema:CreativeWork
164 https://doi.org/10.14214/sf.1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067211495
165 rdf:type schema:CreativeWork
166 https://doi.org/10.3354/cr01098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158898
167 rdf:type schema:CreativeWork
168 https://doi.org/10.5194/bg-14-3083-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086252453
169 rdf:type schema:CreativeWork
170 https://doi.org/10.5194/cpd-10-859-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072666723
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.108266.b schema:alternateName Henan Agricultural University
173 schema:name College of Forestry, Henan Agriculture University, 450001, Zhengzhou, China
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
176 schema:name College of Environment and Planning, Henan University, 475004, Kaifeng, China
177 Department of Geography, University of Hong Kong, Pokfulam, Hong Kong
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.256922.8 schema:alternateName Henan University
180 schema:name College of Environment and Planning, Henan University, 475004, Kaifeng, China
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...