Attributing high-impact extreme events across timescales—a case study of four different types of events View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-02

AUTHORS

Friederike E. L. Otto, Sjoukje Philip, Sarah Kew, Sihan Li, Andrew King, Heidi Cullen

ABSTRACT

Increasing likelihoods of extreme weather events is the most noticeable and damaging manifestation of anthropogenic climate change. In the aftermath of an extreme event, policy makers are often called upon to make timely and sensitive decisions about rebuilding and managing present and future risks. Information regarding whether, where and how present-day and future risks are changing is needed to adequately inform these decisions. But, this information is often not available and when it is, it is often not presented in a systematic way. Here, we demonstrate a seamless approach to the science of extreme event attribution and future risk assessment by using the same set of model ensembles to provide such information on past, present and future hazard risks in four case studies on different types of events. Given the current relevance, we focus on estimating the change in future hazard risk under 1.5 °C and 2 °C of global mean temperature rise. We find that this approach not only addresses important decision-making gaps, but also improves the robustness of future risk assessment and attribution statements alike. More... »

PAGES

399-412

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-018-2258-3

DOI

http://dx.doi.org/10.1007/s10584-018-2258-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105981185


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Environmental Change Institute, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Environmental Change Institute, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otto", 
        "givenName": "Friederike E. L.", 
        "id": "sg:person.01326463237.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326463237.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Philip", 
        "givenName": "Sjoukje", 
        "id": "sg:person.014116526631.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116526631.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kew", 
        "givenName": "Sarah", 
        "id": "sg:person.012576657501.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576657501.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environmental Change Institute, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Environmental Change Institute, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Sihan", 
        "id": "sg:person.015265446137.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265446137.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "Andrew", 
        "id": "sg:person.014242140341.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014242140341.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Central, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.426747.4", 
          "name": [
            "Climate Central, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cullen", 
        "givenName": "Heidi", 
        "id": "sg:person.011370464741.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011370464741.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nclimate2617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736007", 
          "https://doi.org/10.1038/nclimate2617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-017-1906-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083420168", 
          "https://doi.org/10.1007/s10584-017-1906-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085412930", 
          "https://doi.org/10.1038/nclimate3296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011320779", 
          "https://doi.org/10.1038/nclimate2927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016220395", 
          "https://doi.org/10.1038/nclimate3089"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-02", 
    "datePublishedReg": "2018-08-02", 
    "description": "Increasing likelihoods of extreme weather events is the most noticeable and damaging manifestation of anthropogenic climate change. In the aftermath of an extreme event, policy makers are often called upon to make timely and sensitive decisions about rebuilding and managing present and future risks. Information regarding whether, where and how present-day and future risks are changing is needed to adequately inform these decisions. But, this information is often not available and when it is, it is often not presented in a systematic way. Here, we demonstrate a seamless approach to the science of extreme event attribution and future risk assessment by using the same set of model ensembles to provide such information on past, present and future hazard risks in four case studies on different types of events. Given the current relevance, we focus on estimating the change in future hazard risk under 1.5\u00a0\u00b0C and 2\u00a0\u00b0C of global mean temperature rise. We find that this approach not only addresses important decision-making gaps, but also improves the robustness of future risk assessment and attribution statements alike.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10584-018-2258-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2761096", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "149"
      }
    ], 
    "keywords": [
      "extreme events", 
      "global mean temperature rise", 
      "extreme event attribution", 
      "anthropogenic climate change", 
      "hazard risk", 
      "extreme weather events", 
      "mean temperature rise", 
      "future risk assessments", 
      "event attribution", 
      "model ensemble", 
      "attribution statements", 
      "weather events", 
      "climate change", 
      "seamless approach", 
      "future risk", 
      "events", 
      "risk assessment", 
      "case study", 
      "damaging manifestations", 
      "timescales", 
      "temperature rise", 
      "ensemble", 
      "changes", 
      "such information", 
      "rise", 
      "attribution", 
      "different types", 
      "assessment", 
      "sensitive decisions", 
      "information", 
      "types", 
      "aftermath", 
      "study", 
      "same set", 
      "set", 
      "policy makers", 
      "approach", 
      "makers", 
      "systematic way", 
      "science", 
      "gap", 
      "likelihood", 
      "risk", 
      "current relevance", 
      "manifestations", 
      "relevance", 
      "way", 
      "robustness", 
      "decisions", 
      "statements"
    ], 
    "name": "Attributing high-impact extreme events across timescales\u2014a case study of four different types of events", 
    "pagination": "399-412", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105981185"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-018-2258-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-018-2258-3", 
      "https://app.dimensions.ai/details/publication/pub.1105981185"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_762.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10584-018-2258-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2258-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2258-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2258-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2258-3'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      22 PREDICATES      80 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-018-2258-3 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Nf5548e63d2464592a45440a44a1d38b9
4 schema:citation sg:pub.10.1007/s10584-017-1906-3
5 sg:pub.10.1038/nclimate2617
6 sg:pub.10.1038/nclimate2927
7 sg:pub.10.1038/nclimate3089
8 sg:pub.10.1038/nclimate3296
9 schema:datePublished 2018-08-02
10 schema:datePublishedReg 2018-08-02
11 schema:description Increasing likelihoods of extreme weather events is the most noticeable and damaging manifestation of anthropogenic climate change. In the aftermath of an extreme event, policy makers are often called upon to make timely and sensitive decisions about rebuilding and managing present and future risks. Information regarding whether, where and how present-day and future risks are changing is needed to adequately inform these decisions. But, this information is often not available and when it is, it is often not presented in a systematic way. Here, we demonstrate a seamless approach to the science of extreme event attribution and future risk assessment by using the same set of model ensembles to provide such information on past, present and future hazard risks in four case studies on different types of events. Given the current relevance, we focus on estimating the change in future hazard risk under 1.5 °C and 2 °C of global mean temperature rise. We find that this approach not only addresses important decision-making gaps, but also improves the robustness of future risk assessment and attribution statements alike.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N368464e578304a6aa8383602f1248667
16 Nf014e2355ef64b7c903baa51894d26f8
17 sg:journal.1028211
18 schema:keywords aftermath
19 anthropogenic climate change
20 approach
21 assessment
22 attribution
23 attribution statements
24 case study
25 changes
26 climate change
27 current relevance
28 damaging manifestations
29 decisions
30 different types
31 ensemble
32 event attribution
33 events
34 extreme event attribution
35 extreme events
36 extreme weather events
37 future risk
38 future risk assessments
39 gap
40 global mean temperature rise
41 hazard risk
42 information
43 likelihood
44 makers
45 manifestations
46 mean temperature rise
47 model ensemble
48 policy makers
49 relevance
50 rise
51 risk
52 risk assessment
53 robustness
54 same set
55 science
56 seamless approach
57 sensitive decisions
58 set
59 statements
60 study
61 such information
62 systematic way
63 temperature rise
64 timescales
65 types
66 way
67 weather events
68 schema:name Attributing high-impact extreme events across timescales—a case study of four different types of events
69 schema:pagination 399-412
70 schema:productId Ncec9ba347ed047059d803a0acf17b8d4
71 Nef650843c29546dfb587c55c26140d3c
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105981185
73 https://doi.org/10.1007/s10584-018-2258-3
74 schema:sdDatePublished 2022-05-10T10:17
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N35f327ba8a5d42a582b7f45a121e780e
77 schema:url https://doi.org/10.1007/s10584-018-2258-3
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N200431edce8d4016b97d9d7ae2229c40 rdf:first sg:person.015265446137.33
82 rdf:rest N355223961d6046d9b760a70ef7e417e9
83 N20daeff203354841b1d89878a568df5d rdf:first sg:person.011370464741.59
84 rdf:rest rdf:nil
85 N355223961d6046d9b760a70ef7e417e9 rdf:first sg:person.014242140341.40
86 rdf:rest N20daeff203354841b1d89878a568df5d
87 N35f327ba8a5d42a582b7f45a121e780e schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N368464e578304a6aa8383602f1248667 schema:volumeNumber 149
90 rdf:type schema:PublicationVolume
91 N37675b373c36431b945a12338f016d67 rdf:first sg:person.014116526631.03
92 rdf:rest Nbe4ef95cf79a43a5b140834baa9d457c
93 Nbe4ef95cf79a43a5b140834baa9d457c rdf:first sg:person.012576657501.96
94 rdf:rest N200431edce8d4016b97d9d7ae2229c40
95 Ncec9ba347ed047059d803a0acf17b8d4 schema:name dimensions_id
96 schema:value pub.1105981185
97 rdf:type schema:PropertyValue
98 Nef650843c29546dfb587c55c26140d3c schema:name doi
99 schema:value 10.1007/s10584-018-2258-3
100 rdf:type schema:PropertyValue
101 Nf014e2355ef64b7c903baa51894d26f8 schema:issueNumber 3-4
102 rdf:type schema:PublicationIssue
103 Nf5548e63d2464592a45440a44a1d38b9 rdf:first sg:person.01326463237.80
104 rdf:rest N37675b373c36431b945a12338f016d67
105 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
106 schema:name Environmental Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
109 schema:name Environmental Science and Management
110 rdf:type schema:DefinedTerm
111 sg:grant.2761096 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-018-2258-3
112 rdf:type schema:MonetaryGrant
113 sg:journal.1028211 schema:issn 0165-0009
114 1573-1480
115 schema:name Climatic Change
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.011370464741.59 schema:affiliation grid-institutes:grid.426747.4
119 schema:familyName Cullen
120 schema:givenName Heidi
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011370464741.59
122 rdf:type schema:Person
123 sg:person.012576657501.96 schema:affiliation grid-institutes:grid.8653.8
124 schema:familyName Kew
125 schema:givenName Sarah
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012576657501.96
127 rdf:type schema:Person
128 sg:person.01326463237.80 schema:affiliation grid-institutes:grid.4991.5
129 schema:familyName Otto
130 schema:givenName Friederike E. L.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326463237.80
132 rdf:type schema:Person
133 sg:person.014116526631.03 schema:affiliation grid-institutes:grid.8653.8
134 schema:familyName Philip
135 schema:givenName Sjoukje
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116526631.03
137 rdf:type schema:Person
138 sg:person.014242140341.40 schema:affiliation grid-institutes:grid.1008.9
139 schema:familyName King
140 schema:givenName Andrew
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014242140341.40
142 rdf:type schema:Person
143 sg:person.015265446137.33 schema:affiliation grid-institutes:grid.4991.5
144 schema:familyName Li
145 schema:givenName Sihan
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265446137.33
147 rdf:type schema:Person
148 sg:pub.10.1007/s10584-017-1906-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083420168
149 https://doi.org/10.1007/s10584-017-1906-3
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nclimate2617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045736007
152 https://doi.org/10.1038/nclimate2617
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nclimate2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011320779
155 https://doi.org/10.1038/nclimate2927
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nclimate3089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016220395
158 https://doi.org/10.1038/nclimate3089
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nclimate3296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085412930
161 https://doi.org/10.1038/nclimate3296
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.1008.9 schema:alternateName School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Australia
164 schema:name School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Australia
165 rdf:type schema:Organization
166 grid-institutes:grid.426747.4 schema:alternateName Climate Central, Princeton, NJ, USA
167 schema:name Climate Central, Princeton, NJ, USA
168 rdf:type schema:Organization
169 grid-institutes:grid.4991.5 schema:alternateName Environmental Change Institute, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK
170 schema:name Environmental Change Institute, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK
171 rdf:type schema:Organization
172 grid-institutes:grid.8653.8 schema:alternateName R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
173 schema:name R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...