Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-31

AUTHORS

R. K. Mall, Nidhi Singh, K. K. Singh, Geetika Sonkar, Akhilesh Gupta

ABSTRACT

The paper aims to explore the biasness in the RegCM climate model outputs for diverse agro-climatic zones of Uttar Pradesh, India, with emphasis on wheat (Rabi growing season) and rice (Kharif growing season) yields with and without bias correction using quantile mapping approach for the baseline period of 1971–2000. The result shows that RCM highly underestimated the maximum and minimum temperature. There exists a bias towards lower precipitation in annual and Kharif and higher in Rabi along with strikingly low intense warm (maximum temperature > 45 °C and 40 °C) and high cold events (maximum temperature < 20 °C and minimum temperature < 5 °C) in the RCM simulation and biased towards low extreme rainfall > 50 mm/day. Bias correction through quantile mapping approach, however, showed excellent agreement for annual and seasonal maximum and minimum temperature and satisfactory for extreme temperatures but drastically failed to correct rainfall. The study also quantified the biasness in the simulated potential, irrigated, and rainfed wheat and rice yield using DSSAT (Decision Support System for Agro-technology Transfer) crop model by employing observed, RCM baseline, and RCM baseline bias-corrected weather data. The grain yields of RCM-simulated wheat and rice were high while the bias-corrected yield has shown good agreement with corresponding observed yield. Future research must account for the development of more reliable RCM models and explicitly bias correction method in specific to complement future analysis. More... »

PAGES

503-515

References to SciGraph publications

  • 2014-06-01. Heavier summer downpours with climate change revealed by weather forecast resolution model in NATURE CLIMATE CHANGE
  • 2014-10-09. Spatial and temporal analysis of rainfall and temperature trend of India in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2015-01-22. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2012-08-08. Spatial and Temporal Variations in Indian Summer Monsoon Rainfall and Temperature: An Analysis Based on RegCM3 Simulations in PURE AND APPLIED GEOPHYSICS
  • 2017-08-12. Uncertainties and time of emergence of multi-model precipitation projection over homogeneous rainfall zones of India in CLIMATE DYNAMICS
  • 2016-10-10. Bias Correcting Climate Change Simulations - a Critical Review in CURRENT CLIMATE CHANGE REPORTS
  • 2017-06-07. Historical and Projected Surface Temperature over India during the 20th and 21st century in SCIENTIFIC REPORTS
  • 2006-08-08. Impact of Climate Change on Indian Agriculture: A Review in CLIMATIC CHANGE
  • 2013-07-23. EURO-CORDEX: new high-resolution climate change projections for European impact research in REGIONAL ENVIRONMENTAL CHANGE
  • 2017-01-12. The impacts of increased heat stress events on wheat yield under climate change in China in CLIMATIC CHANGE
  • 2002-02. Climate Change and Rice Yields in Diverse Agro-Environments of India. II. Effect of Uncertainties in Scenarios and Crop Models on Impact Assessment in CLIMATIC CHANGE
  • 2013-01-31. An assessment of regional vulnerability of rice to climate change in India in CLIMATIC CHANGE
  • 2011-09-02. Climate change, the monsoon, and rice yield in India in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10584-018-2255-6

    DOI

    http://dx.doi.org/10.1007/s10584-018-2255-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105907980


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Crop and Pasture Production", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India", 
              "id": "http://www.grid.ac/institutes/grid.411507.6", 
              "name": [
                "DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mall", 
            "givenName": "R. K.", 
            "id": "sg:person.01112776244.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112776244.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India", 
              "id": "http://www.grid.ac/institutes/grid.411507.6", 
              "name": [
                "DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Nidhi", 
            "id": "sg:person.014377446630.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377446630.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agromet Division, India Meteorological Department, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "Agromet Division, India Meteorological Department, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "K. K.", 
            "id": "sg:person.011166642362.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166642362.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India", 
              "id": "http://www.grid.ac/institutes/grid.411507.6", 
              "name": [
                "DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sonkar", 
            "givenName": "Geetika", 
            "id": "sg:person.01227224644.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227224644.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Science and Technology, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.454775.0", 
              "name": [
                "Department of Science and Technology, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gupta", 
            "givenName": "Akhilesh", 
            "id": "sg:person.07517430067.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517430067.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10584-005-9042-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031990858", 
              "https://doi.org/10.1007/s10584-005-9042-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10113-013-0499-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015254889", 
              "https://doi.org/10.1007/s10113-013-0499-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037064860", 
              "https://doi.org/10.1038/nclimate2258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0208-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027197424", 
              "https://doi.org/10.1007/s10584-011-0208-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-016-0050-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039290030", 
              "https://doi.org/10.1007/s40641-016-0050-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-014-1283-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041023001", 
              "https://doi.org/10.1007/s00704-014-1283-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013714506779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029512731", 
              "https://doi.org/10.1023/a:1013714506779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-016-1866-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041698505", 
              "https://doi.org/10.1007/s10584-016-1866-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-02130-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085793326", 
              "https://doi.org/10.1038/s41598-017-02130-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-012-0567-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018455456", 
              "https://doi.org/10.1007/s00024-012-0567-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-015-1378-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000059936", 
              "https://doi.org/10.1007/s00704-015-1378-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-017-3847-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091201447", 
              "https://doi.org/10.1007/s00382-017-3847-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0698-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000166671", 
              "https://doi.org/10.1007/s10584-013-0698-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-31", 
        "datePublishedReg": "2018-07-31", 
        "description": "The paper aims to explore the biasness in the RegCM climate model outputs for diverse agro-climatic zones of Uttar Pradesh, India, with emphasis on wheat (Rabi growing season) and rice (Kharif growing season) yields with and without bias correction using quantile mapping approach for the baseline period of 1971\u20132000. The result shows that RCM highly underestimated the maximum and minimum temperature. There exists a bias towards lower precipitation in annual and Kharif and higher in Rabi along with strikingly low intense warm (maximum temperature >\u200945\u00a0\u00b0C and 40\u00a0\u00b0C) and high cold events (maximum temperature <\u200920\u00a0\u00b0C and minimum temperature <\u20095\u00a0\u00b0C) in the RCM simulation and biased towards low extreme rainfall >\u200950\u00a0mm/day. Bias correction through quantile mapping approach, however, showed excellent agreement for annual and seasonal maximum and minimum temperature and satisfactory for extreme temperatures but drastically failed to correct rainfall. The study also quantified the biasness in the simulated potential, irrigated, and rainfed wheat and rice yield using DSSAT (Decision Support System for Agro-technology Transfer) crop model by employing observed, RCM baseline, and RCM baseline bias-corrected weather data. The grain yields of RCM-simulated wheat and rice were high while the bias-corrected yield has shown good agreement with corresponding observed yield. Future research must account for the development of more reliable RCM models and explicitly bias correction method in specific to complement future analysis.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10584-018-2255-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "149"
          }
        ], 
        "keywords": [
          "diverse agro-climatic zones", 
          "quantile mapping approach", 
          "agro-climatic zones", 
          "rice yield", 
          "bias correction", 
          "minimum temperature", 
          "climate change impact assessment", 
          "climate model output", 
          "change impact assessment", 
          "DSSAT crop models", 
          "bias correction methods", 
          "RCM simulations", 
          "extreme rainfall", 
          "cold events", 
          "climate models", 
          "Uttar Pradesh", 
          "grain yield", 
          "low precipitation", 
          "crop models", 
          "rice crop", 
          "observed yields", 
          "model output", 
          "RCM model", 
          "simulated potential", 
          "wheat", 
          "weather data", 
          "yield", 
          "extreme temperatures", 
          "rainfall", 
          "RCM", 
          "zone", 
          "impact assessment", 
          "mapping approach", 
          "baseline period", 
          "Pradesh", 
          "crops", 
          "kharif", 
          "precipitation", 
          "India", 
          "rice", 
          "Rabi", 
          "correction method", 
          "temperature", 
          "events", 
          "good agreement", 
          "future analyses", 
          "model", 
          "period", 
          "agreement", 
          "potential", 
          "data", 
          "future research", 
          "simulations", 
          "correction", 
          "excellent agreement", 
          "bias", 
          "assessment", 
          "development", 
          "output", 
          "days", 
          "biasness", 
          "emphasis", 
          "research", 
          "analysis", 
          "results", 
          "study", 
          "approach", 
          "performance", 
          "method", 
          "paper", 
          "baseline", 
          "RegCM climate model outputs", 
          "high cold events", 
          "low extreme rainfall", 
          "RCM baseline", 
          "RCM baseline bias-corrected weather data", 
          "baseline bias-corrected weather data", 
          "bias-corrected weather data", 
          "bias-corrected yield", 
          "reliable RCM models", 
          "RegCM4.0 climate model"
        ], 
        "name": "Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh, India", 
        "pagination": "503-515", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105907980"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10584-018-2255-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10584-018-2255-6", 
          "https://app.dimensions.ai/details/publication/pub.1105907980"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_771.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10584-018-2255-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2255-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2255-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2255-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-018-2255-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      22 PREDICATES      119 URIs      98 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10584-018-2255-6 schema:about anzsrc-for:07
    2 anzsrc-for:0703
    3 schema:author Nc8f0321d3e0c4a76a1517da56bed2c32
    4 schema:citation sg:pub.10.1007/s00024-012-0567-4
    5 sg:pub.10.1007/s00382-017-3847-y
    6 sg:pub.10.1007/s00704-014-1283-z
    7 sg:pub.10.1007/s00704-015-1378-1
    8 sg:pub.10.1007/s10113-013-0499-2
    9 sg:pub.10.1007/s10584-005-9042-x
    10 sg:pub.10.1007/s10584-011-0208-4
    11 sg:pub.10.1007/s10584-013-0698-3
    12 sg:pub.10.1007/s10584-016-1866-z
    13 sg:pub.10.1007/s40641-016-0050-x
    14 sg:pub.10.1023/a:1013714506779
    15 sg:pub.10.1038/nclimate2258
    16 sg:pub.10.1038/s41598-017-02130-3
    17 schema:datePublished 2018-07-31
    18 schema:datePublishedReg 2018-07-31
    19 schema:description The paper aims to explore the biasness in the RegCM climate model outputs for diverse agro-climatic zones of Uttar Pradesh, India, with emphasis on wheat (Rabi growing season) and rice (Kharif growing season) yields with and without bias correction using quantile mapping approach for the baseline period of 1971–2000. The result shows that RCM highly underestimated the maximum and minimum temperature. There exists a bias towards lower precipitation in annual and Kharif and higher in Rabi along with strikingly low intense warm (maximum temperature > 45 °C and 40 °C) and high cold events (maximum temperature < 20 °C and minimum temperature < 5 °C) in the RCM simulation and biased towards low extreme rainfall > 50 mm/day. Bias correction through quantile mapping approach, however, showed excellent agreement for annual and seasonal maximum and minimum temperature and satisfactory for extreme temperatures but drastically failed to correct rainfall. The study also quantified the biasness in the simulated potential, irrigated, and rainfed wheat and rice yield using DSSAT (Decision Support System for Agro-technology Transfer) crop model by employing observed, RCM baseline, and RCM baseline bias-corrected weather data. The grain yields of RCM-simulated wheat and rice were high while the bias-corrected yield has shown good agreement with corresponding observed yield. Future research must account for the development of more reliable RCM models and explicitly bias correction method in specific to complement future analysis.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N7364b500050a464cb32fa387a9d06f58
    24 N986ebbbca47c4676920af49720252bce
    25 sg:journal.1028211
    26 schema:keywords DSSAT crop models
    27 India
    28 Pradesh
    29 RCM
    30 RCM baseline
    31 RCM baseline bias-corrected weather data
    32 RCM model
    33 RCM simulations
    34 Rabi
    35 RegCM climate model outputs
    36 RegCM4.0 climate model
    37 Uttar Pradesh
    38 agreement
    39 agro-climatic zones
    40 analysis
    41 approach
    42 assessment
    43 baseline
    44 baseline bias-corrected weather data
    45 baseline period
    46 bias
    47 bias correction
    48 bias correction methods
    49 bias-corrected weather data
    50 bias-corrected yield
    51 biasness
    52 change impact assessment
    53 climate change impact assessment
    54 climate model output
    55 climate models
    56 cold events
    57 correction
    58 correction method
    59 crop models
    60 crops
    61 data
    62 days
    63 development
    64 diverse agro-climatic zones
    65 emphasis
    66 events
    67 excellent agreement
    68 extreme rainfall
    69 extreme temperatures
    70 future analyses
    71 future research
    72 good agreement
    73 grain yield
    74 high cold events
    75 impact assessment
    76 kharif
    77 low extreme rainfall
    78 low precipitation
    79 mapping approach
    80 method
    81 minimum temperature
    82 model
    83 model output
    84 observed yields
    85 output
    86 paper
    87 performance
    88 period
    89 potential
    90 precipitation
    91 quantile mapping approach
    92 rainfall
    93 reliable RCM models
    94 research
    95 results
    96 rice
    97 rice crop
    98 rice yield
    99 simulated potential
    100 simulations
    101 study
    102 temperature
    103 weather data
    104 wheat
    105 yield
    106 zone
    107 schema:name Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh, India
    108 schema:pagination 503-515
    109 schema:productId N465782e777564019a7b174aeff2dd743
    110 N9d3df69e49444657881e903599efbfe5
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105907980
    112 https://doi.org/10.1007/s10584-018-2255-6
    113 schema:sdDatePublished 2021-11-01T18:31
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher N819f8c1382e54f038f6cc92c14ba7a74
    116 schema:url https://doi.org/10.1007/s10584-018-2255-6
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N07cffeecf08e43a389b98a3388d11a7f rdf:first sg:person.014377446630.50
    121 rdf:rest N2c34f0bb590a46e59a05bb4264e1414a
    122 N2c34f0bb590a46e59a05bb4264e1414a rdf:first sg:person.011166642362.25
    123 rdf:rest N62d3d8e90c0b46eaa0915e6db98b0ced
    124 N465782e777564019a7b174aeff2dd743 schema:name doi
    125 schema:value 10.1007/s10584-018-2255-6
    126 rdf:type schema:PropertyValue
    127 N62d3d8e90c0b46eaa0915e6db98b0ced rdf:first sg:person.01227224644.41
    128 rdf:rest N81d4d145458e4e89bb2097ef8205e0ce
    129 N7364b500050a464cb32fa387a9d06f58 schema:issueNumber 3-4
    130 rdf:type schema:PublicationIssue
    131 N819f8c1382e54f038f6cc92c14ba7a74 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 N81d4d145458e4e89bb2097ef8205e0ce rdf:first sg:person.07517430067.38
    134 rdf:rest rdf:nil
    135 N986ebbbca47c4676920af49720252bce schema:volumeNumber 149
    136 rdf:type schema:PublicationVolume
    137 N9d3df69e49444657881e903599efbfe5 schema:name dimensions_id
    138 schema:value pub.1105907980
    139 rdf:type schema:PropertyValue
    140 Nc8f0321d3e0c4a76a1517da56bed2c32 rdf:first sg:person.01112776244.54
    141 rdf:rest N07cffeecf08e43a389b98a3388d11a7f
    142 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Agricultural and Veterinary Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Crop and Pasture Production
    147 rdf:type schema:DefinedTerm
    148 sg:journal.1028211 schema:issn 0165-0009
    149 1573-1480
    150 schema:name Climatic Change
    151 schema:publisher Springer Nature
    152 rdf:type schema:Periodical
    153 sg:person.01112776244.54 schema:affiliation grid-institutes:grid.411507.6
    154 schema:familyName Mall
    155 schema:givenName R. K.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112776244.54
    157 rdf:type schema:Person
    158 sg:person.011166642362.25 schema:affiliation grid-institutes:grid.466772.6
    159 schema:familyName Singh
    160 schema:givenName K. K.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166642362.25
    162 rdf:type schema:Person
    163 sg:person.01227224644.41 schema:affiliation grid-institutes:grid.411507.6
    164 schema:familyName Sonkar
    165 schema:givenName Geetika
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227224644.41
    167 rdf:type schema:Person
    168 sg:person.014377446630.50 schema:affiliation grid-institutes:grid.411507.6
    169 schema:familyName Singh
    170 schema:givenName Nidhi
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377446630.50
    172 rdf:type schema:Person
    173 sg:person.07517430067.38 schema:affiliation grid-institutes:grid.454775.0
    174 schema:familyName Gupta
    175 schema:givenName Akhilesh
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517430067.38
    177 rdf:type schema:Person
    178 sg:pub.10.1007/s00024-012-0567-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018455456
    179 https://doi.org/10.1007/s00024-012-0567-4
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00382-017-3847-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091201447
    182 https://doi.org/10.1007/s00382-017-3847-y
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00704-014-1283-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041023001
    185 https://doi.org/10.1007/s00704-014-1283-z
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00704-015-1378-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000059936
    188 https://doi.org/10.1007/s00704-015-1378-1
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10113-013-0499-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015254889
    191 https://doi.org/10.1007/s10113-013-0499-2
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10584-005-9042-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031990858
    194 https://doi.org/10.1007/s10584-005-9042-x
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10584-011-0208-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027197424
    197 https://doi.org/10.1007/s10584-011-0208-4
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10584-013-0698-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000166671
    200 https://doi.org/10.1007/s10584-013-0698-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10584-016-1866-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041698505
    203 https://doi.org/10.1007/s10584-016-1866-z
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s40641-016-0050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039290030
    206 https://doi.org/10.1007/s40641-016-0050-x
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1023/a:1013714506779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029512731
    209 https://doi.org/10.1023/a:1013714506779
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nclimate2258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037064860
    212 https://doi.org/10.1038/nclimate2258
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/s41598-017-02130-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085793326
    215 https://doi.org/10.1038/s41598-017-02130-3
    216 rdf:type schema:CreativeWork
    217 grid-institutes:grid.411507.6 schema:alternateName DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India
    218 schema:name DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, 221005, Varanasi, India
    219 rdf:type schema:Organization
    220 grid-institutes:grid.454775.0 schema:alternateName Department of Science and Technology, New Delhi, India
    221 schema:name Department of Science and Technology, New Delhi, India
    222 rdf:type schema:Organization
    223 grid-institutes:grid.466772.6 schema:alternateName Agromet Division, India Meteorological Department, New Delhi, India
    224 schema:name Agromet Division, India Meteorological Department, New Delhi, India
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...