Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02

AUTHORS

Timothy J. Osborn, Craig J. Wallace, Ian C. Harris, Thomas M. Melvin

ABSTRACT

Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods. More... »

PAGES

353-369

References to SciGraph publications

  • 2004-08. Quantification of modelling uncertainties in a large ensemble of climate change simulations in NATURE
  • 1999-03. Towards the Construction of Climate Change Scenarios in CLIMATIC CHANGE
  • 2007-01. The impact of natural and anthropogenic forcings on climate and hydrology since 1550 in CLIMATE DYNAMICS
  • 2003-10. Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates in CLIMATIC CHANGE
  • 2013-09. The AVOID programme’s new simulations of the global benefits of stringent climate change mitigation in CLIMATIC CHANGE
  • 2000-07. Representing uncertainty in climate change scenarios: a Monte-Carlo approach in INTEGRATED ASSESSMENT
  • 2010-02. Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations in CLIMATIC CHANGE
  • 2013-05. A global assessment of the effects of climate policy on the impacts of climate change in NATURE CLIMATE CHANGE
  • 2012-05. Temperature scaling pattern dependence on representative concentration pathway emission scenarios in CLIMATIC CHANGE
  • 2016-02. Global-scale climate impact functions: the relationship between climate forcing and impact in CLIMATIC CHANGE
  • 2014-02. Pattern scaling: Its strengths and limitations, and an update on the latest model simulations in CLIMATIC CHANGE
  • 2014-02. Robustness of pattern scaled climate change scenarios for adaptation decision support in CLIMATIC CHANGE
  • 2011-11. The representative concentration pathways: an overview in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9

    DOI

    http://dx.doi.org/10.1007/s10584-015-1509-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036098000


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of East Anglia", 
              "id": "https://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Osborn", 
            "givenName": "Timothy J.", 
            "id": "sg:person.01137064640.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of East Anglia", 
              "id": "https://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wallace", 
            "givenName": "Craig J.", 
            "id": "sg:person.012607041122.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607041122.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of East Anglia", 
              "id": "https://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harris", 
            "givenName": "Ian C.", 
            "id": "sg:person.013236040045.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236040045.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of East Anglia", 
              "id": "https://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Melvin", 
            "givenName": "Thomas M.", 
            "id": "sg:person.0764261407.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764261407.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/env.2153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006030213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781107415324.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006314011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0430-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008166853", 
              "https://doi.org/10.1007/s10584-012-0430-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-1034-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009542838", 
              "https://doi.org/10.1007/s10584-013-1034-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-1034-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009542838", 
              "https://doi.org/10.1007/s10584-013-1034-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/bams-88-9-1383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010559256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015666115", 
              "https://doi.org/10.1038/nclimate1793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9737-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018059990", 
              "https://doi.org/10.1007/s10584-009-9737-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9737-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018059990", 
              "https://doi.org/10.1007/s10584-009-9737-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019144202120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020294511", 
              "https://doi.org/10.1023/a:1019144202120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2002jd002670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020320930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0148-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021241034", 
              "https://doi.org/10.1007/s10584-011-0148-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-1032-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023842732", 
              "https://doi.org/10.1007/s10584-013-1032-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0814-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027572298", 
              "https://doi.org/10.1007/s10584-013-0814-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0165-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031399357", 
              "https://doi.org/10.1007/s00382-006-0165-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0165-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031399357", 
              "https://doi.org/10.1007/s00382-006-0165-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/97gl02976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031861905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026035305597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035832790", 
              "https://doi.org/10.1023/a:1026035305597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/joc.3711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038108572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsoft.2007.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038416024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005466909820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045135939", 
              "https://doi.org/10.1023/a:1005466909820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jhm-d-12-0114.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047665141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051805105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-1022-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052148848", 
              "https://doi.org/10.1007/s10584-013-1022-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/gmd-3-679-2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072670003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/gmd-6-1689-2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072670242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.22499/2.6104.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083991114"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-02", 
        "datePublishedReg": "2016-02-01", 
        "description": "Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called \u201cClimGen\u201d. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10584-015-1509-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2777611", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3794242", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3792065", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "134"
          }
        ], 
        "name": "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation", 
        "pagination": "353-369", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "abf544d863622f47406225d55b5602d329a7ebfc1adbd01fe0be453681d798d5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10584-015-1509-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036098000"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10584-015-1509-9", 
          "https://app.dimensions.ai/details/publication/pub.1036098000"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10584-015-1509-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10584-015-1509-9 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author Ne26542e7298c4ad589a4827a8c8f9921
    4 schema:citation sg:pub.10.1007/s00382-006-0165-1
    5 sg:pub.10.1007/s10584-009-9737-5
    6 sg:pub.10.1007/s10584-011-0148-z
    7 sg:pub.10.1007/s10584-012-0430-8
    8 sg:pub.10.1007/s10584-013-0814-4
    9 sg:pub.10.1007/s10584-013-1022-y
    10 sg:pub.10.1007/s10584-013-1032-9
    11 sg:pub.10.1007/s10584-013-1034-7
    12 sg:pub.10.1023/a:1005466909820
    13 sg:pub.10.1023/a:1019144202120
    14 sg:pub.10.1023/a:1026035305597
    15 sg:pub.10.1038/nature02771
    16 sg:pub.10.1038/nclimate1793
    17 https://doi.org/10.1002/env.2153
    18 https://doi.org/10.1002/joc.3711
    19 https://doi.org/10.1016/j.envsoft.2007.09.002
    20 https://doi.org/10.1017/cbo9781107415324.028
    21 https://doi.org/10.1029/2002jd002670
    22 https://doi.org/10.1029/97gl02976
    23 https://doi.org/10.1175/bams-88-9-1383
    24 https://doi.org/10.1175/bams-d-11-00094.1
    25 https://doi.org/10.1175/jhm-d-12-0114.1
    26 https://doi.org/10.22499/2.6104.003
    27 https://doi.org/10.5194/gmd-3-679-2010
    28 https://doi.org/10.5194/gmd-6-1689-2013
    29 schema:datePublished 2016-02
    30 schema:datePublishedReg 2016-02-01
    31 schema:description Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Nb94ead61cf46471889e77b7271e1dbaf
    36 Nf9b4ed74fb704a9382466101abcb65d7
    37 sg:journal.1028211
    38 schema:name Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation
    39 schema:pagination 353-369
    40 schema:productId N0d8c2ecde1214568b423a9a91515d98b
    41 N41c1d5c076ef4fb089416efdd26a337f
    42 Ne2a3137b74fa4d6aaf383aa29d9295bd
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036098000
    44 https://doi.org/10.1007/s10584-015-1509-9
    45 schema:sdDatePublished 2019-04-11T13:10
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N3a5e8c84ed654d08b3f64da151ddb20b
    48 schema:url http://link.springer.com/10.1007/s10584-015-1509-9
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0d8c2ecde1214568b423a9a91515d98b schema:name doi
    53 schema:value 10.1007/s10584-015-1509-9
    54 rdf:type schema:PropertyValue
    55 N362c2ab5ad314306ab807b020f07ac64 rdf:first sg:person.013236040045.20
    56 rdf:rest Nc883c15d672343da8e72fec94b80e779
    57 N3a5e8c84ed654d08b3f64da151ddb20b schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N41c1d5c076ef4fb089416efdd26a337f schema:name dimensions_id
    60 schema:value pub.1036098000
    61 rdf:type schema:PropertyValue
    62 Nb94ead61cf46471889e77b7271e1dbaf schema:volumeNumber 134
    63 rdf:type schema:PublicationVolume
    64 Nc883c15d672343da8e72fec94b80e779 rdf:first sg:person.0764261407.65
    65 rdf:rest rdf:nil
    66 Ne26542e7298c4ad589a4827a8c8f9921 rdf:first sg:person.01137064640.48
    67 rdf:rest Nf53dc9f8473f4fcab98ef6e942e66cf7
    68 Ne2a3137b74fa4d6aaf383aa29d9295bd schema:name readcube_id
    69 schema:value abf544d863622f47406225d55b5602d329a7ebfc1adbd01fe0be453681d798d5
    70 rdf:type schema:PropertyValue
    71 Nf53dc9f8473f4fcab98ef6e942e66cf7 rdf:first sg:person.012607041122.82
    72 rdf:rest N362c2ab5ad314306ab807b020f07ac64
    73 Nf9b4ed74fb704a9382466101abcb65d7 schema:issueNumber 3
    74 rdf:type schema:PublicationIssue
    75 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Earth Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Atmospheric Sciences
    80 rdf:type schema:DefinedTerm
    81 sg:grant.2777611 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
    82 rdf:type schema:MonetaryGrant
    83 sg:grant.3792065 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
    84 rdf:type schema:MonetaryGrant
    85 sg:grant.3794242 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
    86 rdf:type schema:MonetaryGrant
    87 sg:journal.1028211 schema:issn 0165-0009
    88 1573-1480
    89 schema:name Climatic Change
    90 rdf:type schema:Periodical
    91 sg:person.01137064640.48 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
    92 schema:familyName Osborn
    93 schema:givenName Timothy J.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48
    95 rdf:type schema:Person
    96 sg:person.012607041122.82 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
    97 schema:familyName Wallace
    98 schema:givenName Craig J.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607041122.82
    100 rdf:type schema:Person
    101 sg:person.013236040045.20 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
    102 schema:familyName Harris
    103 schema:givenName Ian C.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236040045.20
    105 rdf:type schema:Person
    106 sg:person.0764261407.65 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
    107 schema:familyName Melvin
    108 schema:givenName Thomas M.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764261407.65
    110 rdf:type schema:Person
    111 sg:pub.10.1007/s00382-006-0165-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031399357
    112 https://doi.org/10.1007/s00382-006-0165-1
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10584-009-9737-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059990
    115 https://doi.org/10.1007/s10584-009-9737-5
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10584-011-0148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241034
    118 https://doi.org/10.1007/s10584-011-0148-z
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10584-012-0430-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008166853
    121 https://doi.org/10.1007/s10584-012-0430-8
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s10584-013-0814-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027572298
    124 https://doi.org/10.1007/s10584-013-0814-4
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s10584-013-1022-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052148848
    127 https://doi.org/10.1007/s10584-013-1022-y
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s10584-013-1032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023842732
    130 https://doi.org/10.1007/s10584-013-1032-9
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s10584-013-1034-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009542838
    133 https://doi.org/10.1007/s10584-013-1034-7
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1023/a:1005466909820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135939
    136 https://doi.org/10.1023/a:1005466909820
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1023/a:1019144202120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294511
    139 https://doi.org/10.1023/a:1019144202120
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
    142 https://doi.org/10.1023/a:1026035305597
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
    145 https://doi.org/10.1038/nature02771
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/nclimate1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015666115
    148 https://doi.org/10.1038/nclimate1793
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1002/env.2153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006030213
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1002/joc.3711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038108572
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.envsoft.2007.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038416024
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1017/cbo9781107415324.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006314011
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1029/2002jd002670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320930
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1029/97gl02976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031861905
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1175/bams-88-9-1383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559256
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1175/jhm-d-12-0114.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047665141
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.22499/2.6104.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083991114
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.5194/gmd-3-679-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670003
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.5194/gmd-6-1689-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670242
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.8273.e schema:alternateName University of East Anglia
    175 schema:name Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...