Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02

AUTHORS

Timothy J. Osborn, Craig J. Wallace, Ian C. Harris, Thomas M. Melvin

ABSTRACT

Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods. More... »

PAGES

353-369

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9

DOI

http://dx.doi.org/10.1007/s10584-015-1509-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036098000


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of East Anglia", 
          "id": "https://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osborn", 
        "givenName": "Timothy J.", 
        "id": "sg:person.01137064640.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of East Anglia", 
          "id": "https://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wallace", 
        "givenName": "Craig J.", 
        "id": "sg:person.012607041122.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607041122.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of East Anglia", 
          "id": "https://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harris", 
        "givenName": "Ian C.", 
        "id": "sg:person.013236040045.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236040045.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of East Anglia", 
          "id": "https://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melvin", 
        "givenName": "Thomas M.", 
        "id": "sg:person.0764261407.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764261407.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/env.2153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006030213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107415324.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006314011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-012-0430-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008166853", 
          "https://doi.org/10.1007/s10584-012-0430-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-013-1034-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009542838", 
          "https://doi.org/10.1007/s10584-013-1034-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-013-1034-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009542838", 
          "https://doi.org/10.1007/s10584-013-1034-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-88-9-1383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010559256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015666115", 
          "https://doi.org/10.1038/nclimate1793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-009-9737-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059990", 
          "https://doi.org/10.1007/s10584-009-9737-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-009-9737-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059990", 
          "https://doi.org/10.1007/s10584-009-9737-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019144202120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020294511", 
          "https://doi.org/10.1023/a:1019144202120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0148-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021241034", 
          "https://doi.org/10.1007/s10584-011-0148-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-013-1032-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023842732", 
          "https://doi.org/10.1007/s10584-013-1032-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-013-0814-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027572298", 
          "https://doi.org/10.1007/s10584-013-0814-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0165-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031399357", 
          "https://doi.org/10.1007/s00382-006-0165-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0165-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031399357", 
          "https://doi.org/10.1007/s00382-006-0165-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97gl02976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031861905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026035305597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035832790", 
          "https://doi.org/10.1023/a:1026035305597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036499414", 
          "https://doi.org/10.1038/nature02771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036499414", 
          "https://doi.org/10.1038/nature02771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038108572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2007.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038416024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005466909820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045135939", 
          "https://doi.org/10.1023/a:1005466909820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-12-0114.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047665141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-013-1022-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052148848", 
          "https://doi.org/10.1007/s10584-013-1022-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-3-679-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-6-1689-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22499/2.6104.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083991114"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called \u201cClimGen\u201d. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10584-015-1509-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2777611", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3794242", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3792065", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "134"
      }
    ], 
    "name": "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation", 
    "pagination": "353-369", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "abf544d863622f47406225d55b5602d329a7ebfc1adbd01fe0be453681d798d5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-015-1509-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036098000"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-015-1509-9", 
      "https://app.dimensions.ai/details/publication/pub.1036098000"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10584-015-1509-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-015-1509-9 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N66d29c9c43634caf876f353fb68b050c
4 schema:citation sg:pub.10.1007/s00382-006-0165-1
5 sg:pub.10.1007/s10584-009-9737-5
6 sg:pub.10.1007/s10584-011-0148-z
7 sg:pub.10.1007/s10584-012-0430-8
8 sg:pub.10.1007/s10584-013-0814-4
9 sg:pub.10.1007/s10584-013-1022-y
10 sg:pub.10.1007/s10584-013-1032-9
11 sg:pub.10.1007/s10584-013-1034-7
12 sg:pub.10.1023/a:1005466909820
13 sg:pub.10.1023/a:1019144202120
14 sg:pub.10.1023/a:1026035305597
15 sg:pub.10.1038/nature02771
16 sg:pub.10.1038/nclimate1793
17 https://doi.org/10.1002/env.2153
18 https://doi.org/10.1002/joc.3711
19 https://doi.org/10.1016/j.envsoft.2007.09.002
20 https://doi.org/10.1017/cbo9781107415324.028
21 https://doi.org/10.1029/2002jd002670
22 https://doi.org/10.1029/97gl02976
23 https://doi.org/10.1175/bams-88-9-1383
24 https://doi.org/10.1175/bams-d-11-00094.1
25 https://doi.org/10.1175/jhm-d-12-0114.1
26 https://doi.org/10.22499/2.6104.003
27 https://doi.org/10.5194/gmd-3-679-2010
28 https://doi.org/10.5194/gmd-6-1689-2013
29 schema:datePublished 2016-02
30 schema:datePublishedReg 2016-02-01
31 schema:description Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N017943a9f6eb481e873d65bae041b046
36 Na781b88ea4574fe98b780ed3884ade8b
37 sg:journal.1028211
38 schema:name Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation
39 schema:pagination 353-369
40 schema:productId N116d3e885f55495ab69b7a599b3a656d
41 Nb7b7a45473004765a10c4a87a880e25b
42 Nede303a48dfd4c35946f542193b939eb
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036098000
44 https://doi.org/10.1007/s10584-015-1509-9
45 schema:sdDatePublished 2019-04-11T13:10
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N4ada5946cdd04e5791d82eb68fbafe6d
48 schema:url http://link.springer.com/10.1007/s10584-015-1509-9
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N017943a9f6eb481e873d65bae041b046 schema:volumeNumber 134
53 rdf:type schema:PublicationVolume
54 N116d3e885f55495ab69b7a599b3a656d schema:name doi
55 schema:value 10.1007/s10584-015-1509-9
56 rdf:type schema:PropertyValue
57 N1410c39761b24e1c9ee398226daf2b60 rdf:first sg:person.013236040045.20
58 rdf:rest N3975a39d057f45e2a9b0a4f0ab3ef353
59 N32197f94940f49cc9cf99f4cc4e8343d rdf:first sg:person.012607041122.82
60 rdf:rest N1410c39761b24e1c9ee398226daf2b60
61 N3975a39d057f45e2a9b0a4f0ab3ef353 rdf:first sg:person.0764261407.65
62 rdf:rest rdf:nil
63 N4ada5946cdd04e5791d82eb68fbafe6d schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N66d29c9c43634caf876f353fb68b050c rdf:first sg:person.01137064640.48
66 rdf:rest N32197f94940f49cc9cf99f4cc4e8343d
67 Na781b88ea4574fe98b780ed3884ade8b schema:issueNumber 3
68 rdf:type schema:PublicationIssue
69 Nb7b7a45473004765a10c4a87a880e25b schema:name dimensions_id
70 schema:value pub.1036098000
71 rdf:type schema:PropertyValue
72 Nede303a48dfd4c35946f542193b939eb schema:name readcube_id
73 schema:value abf544d863622f47406225d55b5602d329a7ebfc1adbd01fe0be453681d798d5
74 rdf:type schema:PropertyValue
75 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
76 schema:name Earth Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
79 schema:name Atmospheric Sciences
80 rdf:type schema:DefinedTerm
81 sg:grant.2777611 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
82 rdf:type schema:MonetaryGrant
83 sg:grant.3792065 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
84 rdf:type schema:MonetaryGrant
85 sg:grant.3794242 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
86 rdf:type schema:MonetaryGrant
87 sg:journal.1028211 schema:issn 0165-0009
88 1573-1480
89 schema:name Climatic Change
90 rdf:type schema:Periodical
91 sg:person.01137064640.48 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
92 schema:familyName Osborn
93 schema:givenName Timothy J.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48
95 rdf:type schema:Person
96 sg:person.012607041122.82 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
97 schema:familyName Wallace
98 schema:givenName Craig J.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607041122.82
100 rdf:type schema:Person
101 sg:person.013236040045.20 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
102 schema:familyName Harris
103 schema:givenName Ian C.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236040045.20
105 rdf:type schema:Person
106 sg:person.0764261407.65 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
107 schema:familyName Melvin
108 schema:givenName Thomas M.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764261407.65
110 rdf:type schema:Person
111 sg:pub.10.1007/s00382-006-0165-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031399357
112 https://doi.org/10.1007/s00382-006-0165-1
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10584-009-9737-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059990
115 https://doi.org/10.1007/s10584-009-9737-5
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10584-011-0148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241034
118 https://doi.org/10.1007/s10584-011-0148-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10584-012-0430-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008166853
121 https://doi.org/10.1007/s10584-012-0430-8
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10584-013-0814-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027572298
124 https://doi.org/10.1007/s10584-013-0814-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10584-013-1022-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052148848
127 https://doi.org/10.1007/s10584-013-1022-y
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10584-013-1032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023842732
130 https://doi.org/10.1007/s10584-013-1032-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10584-013-1034-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009542838
133 https://doi.org/10.1007/s10584-013-1034-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1023/a:1005466909820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135939
136 https://doi.org/10.1023/a:1005466909820
137 rdf:type schema:CreativeWork
138 sg:pub.10.1023/a:1019144202120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294511
139 https://doi.org/10.1023/a:1019144202120
140 rdf:type schema:CreativeWork
141 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
142 https://doi.org/10.1023/a:1026035305597
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
145 https://doi.org/10.1038/nature02771
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nclimate1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015666115
148 https://doi.org/10.1038/nclimate1793
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/env.2153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006030213
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/joc.3711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038108572
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.envsoft.2007.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038416024
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1017/cbo9781107415324.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006314011
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1029/2002jd002670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320930
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1029/97gl02976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031861905
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1175/bams-88-9-1383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559256
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1175/jhm-d-12-0114.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047665141
167 rdf:type schema:CreativeWork
168 https://doi.org/10.22499/2.6104.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083991114
169 rdf:type schema:CreativeWork
170 https://doi.org/10.5194/gmd-3-679-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670003
171 rdf:type schema:CreativeWork
172 https://doi.org/10.5194/gmd-6-1689-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670242
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.8273.e schema:alternateName University of East Anglia
175 schema:name Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...