Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-07

AUTHORS

Timothy J. Osborn, Craig J. Wallace, Ian C. Harris, Thomas M. Melvin

ABSTRACT

Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods. More... »

PAGES

353-369

References to SciGraph publications

  • 2004-08. Quantification of modelling uncertainties in a large ensemble of climate change simulations in NATURE
  • 1999-03. Towards the Construction of Climate Change Scenarios in CLIMATIC CHANGE
  • 2006-09-22. The impact of natural and anthropogenic forcings on climate and hydrology since 1550 in CLIMATE DYNAMICS
  • 2003-10. Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates in CLIMATIC CHANGE
  • 2013-07-19. The AVOID programme’s new simulations of the global benefits of stringent climate change mitigation in CLIMATIC CHANGE
  • 2013-12-14. Robustness of pattern scaled climate change scenarios for adaptation decision support in CLIMATIC CHANGE
  • 2010-01-13. Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations in CLIMATIC CHANGE
  • 2013-01-13. A global assessment of the effects of climate policy on the impacts of climate change in NATURE CLIMATE CHANGE
  • 2012-03-23. Temperature scaling pattern dependence on representative concentration pathway emission scenarios in CLIMATIC CHANGE
  • 2014-01-21. Global-scale climate impact functions: the relationship between climate forcing and impact in CLIMATIC CHANGE
  • 2014-01-08. Pattern scaling: Its strengths and limitations, and an update on the latest model simulations in CLIMATIC CHANGE
  • 2000-07. Representing uncertainty in climate change scenarios: a Monte-Carlo approach in INTEGRATED ASSESSMENT
  • 2011-08-05. The representative concentration pathways: an overview in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9

    DOI

    http://dx.doi.org/10.1007/s10584-015-1509-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036098000


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
              "id": "http://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Osborn", 
            "givenName": "Timothy J.", 
            "id": "sg:person.01137064640.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
              "id": "http://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wallace", 
            "givenName": "Craig J.", 
            "id": "sg:person.012607041122.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607041122.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
              "id": "http://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harris", 
            "givenName": "Ian C.", 
            "id": "sg:person.013236040045.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236040045.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
              "id": "http://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Melvin", 
            "givenName": "Thomas M.", 
            "id": "sg:person.0764261407.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764261407.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10584-013-1022-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052148848", 
              "https://doi.org/10.1007/s10584-013-1022-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0430-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008166853", 
              "https://doi.org/10.1007/s10584-012-0430-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-1034-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009542838", 
              "https://doi.org/10.1007/s10584-013-1034-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0148-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021241034", 
              "https://doi.org/10.1007/s10584-011-0148-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005466909820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045135939", 
              "https://doi.org/10.1023/a:1005466909820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9737-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018059990", 
              "https://doi.org/10.1007/s10584-009-9737-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026035305597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035832790", 
              "https://doi.org/10.1023/a:1026035305597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0814-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027572298", 
              "https://doi.org/10.1007/s10584-013-0814-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015666115", 
              "https://doi.org/10.1038/nclimate1793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0165-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031399357", 
              "https://doi.org/10.1007/s00382-006-0165-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019144202120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020294511", 
              "https://doi.org/10.1023/a:1019144202120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-1032-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023842732", 
              "https://doi.org/10.1007/s10584-013-1032-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10-07", 
        "datePublishedReg": "2015-10-07", 
        "description": "Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called \u201cClimGen\u201d. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10584-015-1509-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2777611", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3794242", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3792065", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "134"
          }
        ], 
        "keywords": [
          "future climate change projections", 
          "observed precipitation anomalies", 
          "climate model grids", 
          "land\u2013sea contrast", 
          "variability of precipitation", 
          "low precipitation extremes", 
          "climate change projections", 
          "global mean temperature", 
          "climate change patterns", 
          "inter-annual variability", 
          "monthly precipitation totals", 
          "future climate scenarios", 
          "precipitation anomalies", 
          "precipitation extremes", 
          "climate models", 
          "local precipitation", 
          "change projections", 
          "precipitation totals", 
          "monthly precipitation", 
          "cloud cover", 
          "climate scenarios", 
          "model grid", 
          "future scenarios", 
          "precipitation", 
          "ClimGen", 
          "finer grid", 
          "change patterns", 
          "variability", 
          "particular software application", 
          "distribution changes", 
          "timeseries", 
          "gamma distribution", 
          "cover", 
          "shape parameters", 
          "anomalies", 
          "extremes", 
          "changes", 
          "particular significance", 
          "scenarios", 
          "patterns", 
          "projections", 
          "example application", 
          "grid", 
          "distribution", 
          "temperature", 
          "interpolation", 
          "sequence", 
          "parameters", 
          "model", 
          "contrast", 
          "new approach", 
          "significance", 
          "logistic function", 
          "structure", 
          "shape", 
          "approach", 
          "development", 
          "applications", 
          "focus", 
          "number of innovations", 
          "method", 
          "number", 
          "total", 
          "function", 
          "testing", 
          "innovation", 
          "software applications"
        ], 
        "name": "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation", 
        "pagination": "353-369", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036098000"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10584-015-1509-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10584-015-1509-9", 
          "https://app.dimensions.ai/details/publication/pub.1036098000"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_651.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10584-015-1509-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1509-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    204 TRIPLES      22 PREDICATES      105 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10584-015-1509-9 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author Ndb6aea75e1004e76afa19635deb77cde
    4 schema:citation sg:pub.10.1007/s00382-006-0165-1
    5 sg:pub.10.1007/s10584-009-9737-5
    6 sg:pub.10.1007/s10584-011-0148-z
    7 sg:pub.10.1007/s10584-012-0430-8
    8 sg:pub.10.1007/s10584-013-0814-4
    9 sg:pub.10.1007/s10584-013-1022-y
    10 sg:pub.10.1007/s10584-013-1032-9
    11 sg:pub.10.1007/s10584-013-1034-7
    12 sg:pub.10.1023/a:1005466909820
    13 sg:pub.10.1023/a:1019144202120
    14 sg:pub.10.1023/a:1026035305597
    15 sg:pub.10.1038/nature02771
    16 sg:pub.10.1038/nclimate1793
    17 schema:datePublished 2015-10-07
    18 schema:datePublishedReg 2015-10-07
    19 schema:description Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N1cb7f4e4982047798911ba233d86fa83
    24 Naa76f45334864c71bc7eb1e43a7a2686
    25 sg:journal.1028211
    26 schema:keywords ClimGen
    27 anomalies
    28 applications
    29 approach
    30 change patterns
    31 change projections
    32 changes
    33 climate change patterns
    34 climate change projections
    35 climate model grids
    36 climate models
    37 climate scenarios
    38 cloud cover
    39 contrast
    40 cover
    41 development
    42 distribution
    43 distribution changes
    44 example application
    45 extremes
    46 finer grid
    47 focus
    48 function
    49 future climate change projections
    50 future climate scenarios
    51 future scenarios
    52 gamma distribution
    53 global mean temperature
    54 grid
    55 innovation
    56 inter-annual variability
    57 interpolation
    58 land–sea contrast
    59 local precipitation
    60 logistic function
    61 low precipitation extremes
    62 method
    63 model
    64 model grid
    65 monthly precipitation
    66 monthly precipitation totals
    67 new approach
    68 number
    69 number of innovations
    70 observed precipitation anomalies
    71 parameters
    72 particular significance
    73 particular software application
    74 patterns
    75 precipitation
    76 precipitation anomalies
    77 precipitation extremes
    78 precipitation totals
    79 projections
    80 scenarios
    81 sequence
    82 shape
    83 shape parameters
    84 significance
    85 software applications
    86 structure
    87 temperature
    88 testing
    89 timeseries
    90 total
    91 variability
    92 variability of precipitation
    93 schema:name Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation
    94 schema:pagination 353-369
    95 schema:productId N6875a5c9643b44fbb96c023b3f6d7c0b
    96 Naa4bf34c79444afd835ea0d557e653ec
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036098000
    98 https://doi.org/10.1007/s10584-015-1509-9
    99 schema:sdDatePublished 2022-06-01T22:13
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher Necff656fcdb74ad69ee7a651551c9658
    102 schema:url https://doi.org/10.1007/s10584-015-1509-9
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N180bd32e609645ea879b35bf744584e9 rdf:first sg:person.0764261407.65
    107 rdf:rest rdf:nil
    108 N1cb7f4e4982047798911ba233d86fa83 schema:issueNumber 3
    109 rdf:type schema:PublicationIssue
    110 N24f682a797d6469f8b9dbcf4c9223ed2 rdf:first sg:person.013236040045.20
    111 rdf:rest N180bd32e609645ea879b35bf744584e9
    112 N6875a5c9643b44fbb96c023b3f6d7c0b schema:name doi
    113 schema:value 10.1007/s10584-015-1509-9
    114 rdf:type schema:PropertyValue
    115 Naa4bf34c79444afd835ea0d557e653ec schema:name dimensions_id
    116 schema:value pub.1036098000
    117 rdf:type schema:PropertyValue
    118 Naa76f45334864c71bc7eb1e43a7a2686 schema:volumeNumber 134
    119 rdf:type schema:PublicationVolume
    120 Nc4823683a542438cb647b13d8d0d0a5a rdf:first sg:person.012607041122.82
    121 rdf:rest N24f682a797d6469f8b9dbcf4c9223ed2
    122 Ndb6aea75e1004e76afa19635deb77cde rdf:first sg:person.01137064640.48
    123 rdf:rest Nc4823683a542438cb647b13d8d0d0a5a
    124 Necff656fcdb74ad69ee7a651551c9658 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Earth Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Atmospheric Sciences
    131 rdf:type schema:DefinedTerm
    132 sg:grant.2777611 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
    133 rdf:type schema:MonetaryGrant
    134 sg:grant.3792065 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.3794242 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-015-1509-9
    137 rdf:type schema:MonetaryGrant
    138 sg:journal.1028211 schema:issn 0165-0009
    139 1573-1480
    140 schema:name Climatic Change
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.01137064640.48 schema:affiliation grid-institutes:grid.8273.e
    144 schema:familyName Osborn
    145 schema:givenName Timothy J.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48
    147 rdf:type schema:Person
    148 sg:person.012607041122.82 schema:affiliation grid-institutes:grid.8273.e
    149 schema:familyName Wallace
    150 schema:givenName Craig J.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607041122.82
    152 rdf:type schema:Person
    153 sg:person.013236040045.20 schema:affiliation grid-institutes:grid.8273.e
    154 schema:familyName Harris
    155 schema:givenName Ian C.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013236040045.20
    157 rdf:type schema:Person
    158 sg:person.0764261407.65 schema:affiliation grid-institutes:grid.8273.e
    159 schema:familyName Melvin
    160 schema:givenName Thomas M.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764261407.65
    162 rdf:type schema:Person
    163 sg:pub.10.1007/s00382-006-0165-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031399357
    164 https://doi.org/10.1007/s00382-006-0165-1
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s10584-009-9737-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059990
    167 https://doi.org/10.1007/s10584-009-9737-5
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s10584-011-0148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241034
    170 https://doi.org/10.1007/s10584-011-0148-z
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s10584-012-0430-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008166853
    173 https://doi.org/10.1007/s10584-012-0430-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10584-013-0814-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027572298
    176 https://doi.org/10.1007/s10584-013-0814-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s10584-013-1022-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052148848
    179 https://doi.org/10.1007/s10584-013-1022-y
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10584-013-1032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023842732
    182 https://doi.org/10.1007/s10584-013-1032-9
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10584-013-1034-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009542838
    185 https://doi.org/10.1007/s10584-013-1034-7
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1023/a:1005466909820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135939
    188 https://doi.org/10.1023/a:1005466909820
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1023/a:1019144202120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294511
    191 https://doi.org/10.1023/a:1019144202120
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
    194 https://doi.org/10.1023/a:1026035305597
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
    197 https://doi.org/10.1038/nature02771
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nclimate1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015666115
    200 https://doi.org/10.1038/nclimate1793
    201 rdf:type schema:CreativeWork
    202 grid-institutes:grid.8273.e schema:alternateName Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
    203 schema:name Climatic Research Unit, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
    204 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...