Testing climate models using an impact model: what are the advantages? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08

AUTHORS

Marc Stéfanon, Nicolas K. Martin-StPaul, Paul Leadley, Sophie Bastin, Alessandro Dell’Aquila, Philippe Drobinski, Clemente Gallardo

ABSTRACT

Global and regional climate model (GCM and RCM) outputs are often used as climate forcing for ecological impact models, and this potentially results in large cumulative errors because information and error are passed sequentially along the modeling chain from GCM to RCM to impact model. There are also a growing number of Earth system modeling platforms in which climate and ecological models are dynamically coupled, and in this case error amplification due to feedbacks can lead to even more serious problems. It is essential in both cases to rethink the organization of evaluation which typically relies on independent validation at each successive step, and to rely more heavily on analyses that cover the full modeling chain and thus require stronger interactions between climate and impact modelers. In this paper, we illustrate the benefits of using impact models as an additional source of information for evaluating climate models. Four RCMs that are part of the HyMeX (Hydrological cycle in Mediterranean EXperiment) and Mediterranean CORDEX projects (MED-CORDEX) were tested with observed climatology and a process-based model of European beech (Fagus sylvatica L.) tree growth and forest ecosystem functioning that has been rigorously validated. This two part analysis i) indicates that evaluation of RCMs on climate variables alone may be insufficient to determine the suitability of RCMs for studies of climate-forest interactions and ii) points to areas of improvement in these RCMs that would improve impact studies or behavior in coupled climate-ecosystem models over the spatial domain studied. More... »

PAGES

649-661

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-015-1412-4

DOI

http://dx.doi.org/10.1007/s10584-015-1412-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042781423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Laboratoire d\u2019\u00c9cologie Syst\u00e9matique et \u00c9volution (ESE), (UMR 8079 CNRS/Univ. Paris-Sud/AgroParisTech), Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "St\u00e9fanon", 
        "givenName": "Marc", 
        "id": "sg:person.011724476107.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724476107.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Institute for Agricultural Research", 
          "id": "https://www.grid.ac/institutes/grid.414548.8", 
          "name": [
            "Laboratoire d\u2019\u00c9cologie Syst\u00e9matique et \u00c9volution (ESE), (UMR 8079 CNRS/Univ. Paris-Sud/AgroParisTech), Orsay, France", 
            "Ecologie des For\u00eats Mediterraneennes, INRA, UR629, F-84914 Avignon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin-StPaul", 
        "givenName": "Nicolas K.", 
        "id": "sg:person.0771146617.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771146617.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Laboratoire d\u2019\u00c9cologie Syst\u00e9matique et \u00c9volution (ESE), (UMR 8079 CNRS/Univ. Paris-Sud/AgroParisTech), Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leadley", 
        "givenName": "Paul", 
        "id": "sg:person.010133002263.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133002263.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atmospheres Laboratory Environments, Observations Spatiales", 
          "id": "https://www.grid.ac/institutes/grid.494619.7", 
          "name": [
            "Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace (CNRS/UVSQ/UPMC), Guyancourt, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastin", 
        "givenName": "Sophie", 
        "id": "sg:person.011206506621.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206506621.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agency For New Technologies, Energy and Sustainable Economic Development", 
          "id": "https://www.grid.ac/institutes/grid.5196.b", 
          "name": [
            "Ente per le Nuove Technologie, l\u2019Energia e l\u2019Ambiente (ENEA), Climate Section, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dell\u2019Aquila", 
        "givenName": "Alessandro", 
        "id": "sg:person.016214332301.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214332301.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique", 
          "id": "https://www.grid.ac/institutes/grid.463916.f", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD) - Institut Pierre Simon Laplace, (CNRS/Ecole Polytechnique/ENS/UPMC), Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drobinski", 
        "givenName": "Philippe", 
        "id": "sg:person.013260656606.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260656606.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Instituto de Ciencias Ambientales de la UCLM, Toledo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallardo", 
        "givenName": "Clemente", 
        "id": "sg:person.012243632036.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243632036.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-013-1742-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000544998", 
          "https://doi.org/10.1007/s00382-013-1742-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2012.01764.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003939523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/7/2/024017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004944135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2486.2003.00666.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005882509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-004-0397-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006738584", 
          "https://doi.org/10.1007/s00468-004-0397-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-004-0397-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006738584", 
          "https://doi.org/10.1007/s00468-004-0397-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1472-4642.2008.00491.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006902278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-14-00176.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007889385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010557784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.2153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010821481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jamc1636.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011952210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0769-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015183881", 
          "https://doi.org/10.1007/s00382-010-0769-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0769-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015183881", 
          "https://doi.org/10.1007/s00382-010-0769-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016344257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-013-0992-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019615486", 
          "https://doi.org/10.1007/s00704-013-0992-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2009.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019853471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2699.2006.01533.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020074659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2007.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-88-9-1395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022461811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023669042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1558-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415479", 
          "https://doi.org/10.1007/s00382-012-1558-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2011.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028747153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2010.00467.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029623147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0587.2008.05742.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030102374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0587.2008.05742.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030102374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-013-0825-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030407006", 
          "https://doi.org/10.1007/s10584-013-0825-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2058-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032945444", 
          "https://doi.org/10.1007/s00382-014-2058-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2005.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033982609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2013.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042744595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jd008972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043103579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048317429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2006.01214.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048666686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052087100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd900719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052382105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hessd-9-5355-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053008417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-12-00242.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053651592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/forest:2000100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969312"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08", 
    "datePublishedReg": "2015-08-01", 
    "description": "Global and regional climate model (GCM and RCM) outputs are often used as climate forcing for ecological impact models, and this potentially results in large cumulative errors because information and error are passed sequentially along the modeling chain from GCM to RCM to impact model. There are also a growing number of Earth system modeling platforms in which climate and ecological models are dynamically coupled, and in this case error amplification due to feedbacks can lead to even more serious problems. It is essential in both cases to rethink the organization of evaluation which typically relies on independent validation at each successive step, and to rely more heavily on analyses that cover the full modeling chain and thus require stronger interactions between climate and impact modelers. In this paper, we illustrate the benefits of using impact models as an additional source of information for evaluating climate models. Four RCMs that are part of the HyMeX (Hydrological cycle in Mediterranean EXperiment) and Mediterranean CORDEX projects (MED-CORDEX) were tested with observed climatology and a process-based model of European beech (Fagus sylvatica L.) tree growth and forest ecosystem functioning that has been rigorously validated. This two part analysis i) indicates that evaluation of RCMs on climate variables alone may be insufficient to determine the suitability of RCMs for studies of climate-forest interactions and ii) points to areas of improvement in these RCMs that would improve impact studies or behavior in coupled climate-ecosystem models over the spatial domain studied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10584-015-1412-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "131"
      }
    ], 
    "name": "Testing climate models using an impact model: what are the advantages?", 
    "pagination": "649-661", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cbc9564bd18d38f6d8e8aafe70062ac4f3772f025ae07b0271875d3ded1e8285"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-015-1412-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042781423"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-015-1412-4", 
      "https://app.dimensions.ai/details/publication/pub.1042781423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10584-015-1412-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1412-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1412-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1412-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-015-1412-4'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-015-1412-4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N432623cfb67348ba9de24a5fd8b67ad0
4 schema:citation sg:pub.10.1007/s00382-010-0769-3
5 sg:pub.10.1007/s00382-012-1558-y
6 sg:pub.10.1007/s00382-013-1742-8
7 sg:pub.10.1007/s00382-014-2058-z
8 sg:pub.10.1007/s00468-004-0397-9
9 sg:pub.10.1007/s00704-013-0992-z
10 sg:pub.10.1007/s10584-013-0825-1
11 https://doi.org/10.1002/grl.50612
12 https://doi.org/10.1002/joc.2153
13 https://doi.org/10.1002/qj.828
14 https://doi.org/10.1016/j.agrformet.2011.10.010
15 https://doi.org/10.1016/j.ecolmodel.2005.01.003
16 https://doi.org/10.1016/j.ecolmodel.2005.01.004
17 https://doi.org/10.1016/j.ecolmodel.2007.09.012
18 https://doi.org/10.1016/j.foreco.2009.09.023
19 https://doi.org/10.1016/j.gloplacha.2013.04.005
20 https://doi.org/10.1029/2000jd900719
21 https://doi.org/10.1029/2002jd002559
22 https://doi.org/10.1029/2007jd008972
23 https://doi.org/10.1046/j.1365-2486.2003.00666.x
24 https://doi.org/10.1051/forest:2000100
25 https://doi.org/10.1088/1748-9326/7/2/024017
26 https://doi.org/10.1111/gcb.12426
27 https://doi.org/10.1111/gcb.12727
28 https://doi.org/10.1111/j.1365-2664.2006.01214.x
29 https://doi.org/10.1111/j.1365-2699.2006.01533.x
30 https://doi.org/10.1111/j.1461-0248.2012.01764.x
31 https://doi.org/10.1111/j.1472-4642.2008.00491.x
32 https://doi.org/10.1111/j.1600-0587.2008.05742.x
33 https://doi.org/10.1111/j.1600-0870.2010.00467.x
34 https://doi.org/10.1175/2007jamc1636.1
35 https://doi.org/10.1175/bams-88-9-1395
36 https://doi.org/10.1175/bams-d-11-00094.1
37 https://doi.org/10.1175/bams-d-12-00242.1
38 https://doi.org/10.1175/bams-d-14-00176.1
39 https://doi.org/10.5194/hessd-9-5355-2012
40 schema:datePublished 2015-08
41 schema:datePublishedReg 2015-08-01
42 schema:description Global and regional climate model (GCM and RCM) outputs are often used as climate forcing for ecological impact models, and this potentially results in large cumulative errors because information and error are passed sequentially along the modeling chain from GCM to RCM to impact model. There are also a growing number of Earth system modeling platforms in which climate and ecological models are dynamically coupled, and in this case error amplification due to feedbacks can lead to even more serious problems. It is essential in both cases to rethink the organization of evaluation which typically relies on independent validation at each successive step, and to rely more heavily on analyses that cover the full modeling chain and thus require stronger interactions between climate and impact modelers. In this paper, we illustrate the benefits of using impact models as an additional source of information for evaluating climate models. Four RCMs that are part of the HyMeX (Hydrological cycle in Mediterranean EXperiment) and Mediterranean CORDEX projects (MED-CORDEX) were tested with observed climatology and a process-based model of European beech (Fagus sylvatica L.) tree growth and forest ecosystem functioning that has been rigorously validated. This two part analysis i) indicates that evaluation of RCMs on climate variables alone may be insufficient to determine the suitability of RCMs for studies of climate-forest interactions and ii) points to areas of improvement in these RCMs that would improve impact studies or behavior in coupled climate-ecosystem models over the spatial domain studied.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N434377c4dc254f32b8c0f1f1b5dda30d
47 Nb9723130d5cd4edda0efad216bd0f5c3
48 sg:journal.1028211
49 schema:name Testing climate models using an impact model: what are the advantages?
50 schema:pagination 649-661
51 schema:productId Na80e973a1242401f9a6bc9ada1c39fed
52 Nc5146dc6710244c9b9e10be845f7c24c
53 Nfc36963aefae4f3db14c4d02549f5195
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042781423
55 https://doi.org/10.1007/s10584-015-1412-4
56 schema:sdDatePublished 2019-04-10T16:34
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nd9935326e5aa45968c16f07ae47411b3
59 schema:url http://link.springer.com/10.1007/s10584-015-1412-4
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N2944138465a041efa5e9ce89d529cdc1 rdf:first sg:person.0771146617.09
64 rdf:rest Nd7f2a28969c449059dfdd42a8077c531
65 N432623cfb67348ba9de24a5fd8b67ad0 rdf:first sg:person.011724476107.49
66 rdf:rest N2944138465a041efa5e9ce89d529cdc1
67 N434377c4dc254f32b8c0f1f1b5dda30d schema:issueNumber 4
68 rdf:type schema:PublicationIssue
69 N7f6c17251c3545ed86d0a978ac14f11b schema:name Instituto de Ciencias Ambientales de la UCLM, Toledo, Spain
70 rdf:type schema:Organization
71 N826bb995469b4fedb1700861a2428c84 rdf:first sg:person.016214332301.11
72 rdf:rest Nba7386e139204226bf5e04937d85dbfa
73 Na80e973a1242401f9a6bc9ada1c39fed schema:name dimensions_id
74 schema:value pub.1042781423
75 rdf:type schema:PropertyValue
76 Nb9723130d5cd4edda0efad216bd0f5c3 schema:volumeNumber 131
77 rdf:type schema:PublicationVolume
78 Nba7386e139204226bf5e04937d85dbfa rdf:first sg:person.013260656606.06
79 rdf:rest Ne3215fb0a02c4c97a525069e4253eefe
80 Nc5146dc6710244c9b9e10be845f7c24c schema:name readcube_id
81 schema:value cbc9564bd18d38f6d8e8aafe70062ac4f3772f025ae07b0271875d3ded1e8285
82 rdf:type schema:PropertyValue
83 Nd7f2a28969c449059dfdd42a8077c531 rdf:first sg:person.010133002263.12
84 rdf:rest Ne286786f2acc4698a60746366ceace81
85 Nd9935326e5aa45968c16f07ae47411b3 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Ne286786f2acc4698a60746366ceace81 rdf:first sg:person.011206506621.63
88 rdf:rest N826bb995469b4fedb1700861a2428c84
89 Ne3215fb0a02c4c97a525069e4253eefe rdf:first sg:person.012243632036.52
90 rdf:rest rdf:nil
91 Nfc36963aefae4f3db14c4d02549f5195 schema:name doi
92 schema:value 10.1007/s10584-015-1412-4
93 rdf:type schema:PropertyValue
94 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
95 schema:name Earth Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
98 schema:name Atmospheric Sciences
99 rdf:type schema:DefinedTerm
100 sg:journal.1028211 schema:issn 0165-0009
101 1573-1480
102 schema:name Climatic Change
103 rdf:type schema:Periodical
104 sg:person.010133002263.12 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
105 schema:familyName Leadley
106 schema:givenName Paul
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133002263.12
108 rdf:type schema:Person
109 sg:person.011206506621.63 schema:affiliation https://www.grid.ac/institutes/grid.494619.7
110 schema:familyName Bastin
111 schema:givenName Sophie
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206506621.63
113 rdf:type schema:Person
114 sg:person.011724476107.49 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
115 schema:familyName Stéfanon
116 schema:givenName Marc
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724476107.49
118 rdf:type schema:Person
119 sg:person.012243632036.52 schema:affiliation N7f6c17251c3545ed86d0a978ac14f11b
120 schema:familyName Gallardo
121 schema:givenName Clemente
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243632036.52
123 rdf:type schema:Person
124 sg:person.013260656606.06 schema:affiliation https://www.grid.ac/institutes/grid.463916.f
125 schema:familyName Drobinski
126 schema:givenName Philippe
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260656606.06
128 rdf:type schema:Person
129 sg:person.016214332301.11 schema:affiliation https://www.grid.ac/institutes/grid.5196.b
130 schema:familyName Dell’Aquila
131 schema:givenName Alessandro
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214332301.11
133 rdf:type schema:Person
134 sg:person.0771146617.09 schema:affiliation https://www.grid.ac/institutes/grid.414548.8
135 schema:familyName Martin-StPaul
136 schema:givenName Nicolas K.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771146617.09
138 rdf:type schema:Person
139 sg:pub.10.1007/s00382-010-0769-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015183881
140 https://doi.org/10.1007/s00382-010-0769-3
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00382-012-1558-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415479
143 https://doi.org/10.1007/s00382-012-1558-y
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00382-013-1742-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000544998
146 https://doi.org/10.1007/s00382-013-1742-8
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00382-014-2058-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032945444
149 https://doi.org/10.1007/s00382-014-2058-z
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00468-004-0397-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006738584
152 https://doi.org/10.1007/s00468-004-0397-9
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00704-013-0992-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019615486
155 https://doi.org/10.1007/s00704-013-0992-z
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10584-013-0825-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030407006
158 https://doi.org/10.1007/s10584-013-0825-1
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/grl.50612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052087100
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/joc.2153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010821481
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.agrformet.2011.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028747153
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ecolmodel.2005.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033982609
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ecolmodel.2005.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010557784
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ecolmodel.2007.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081892
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.foreco.2009.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019853471
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.gloplacha.2013.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042744595
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/2000jd900719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052382105
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1029/2002jd002559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048317429
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1029/2007jd008972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043103579
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1046/j.1365-2486.2003.00666.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005882509
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1051/forest:2000100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969312
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1088/1748-9326/7/2/024017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004944135
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/gcb.12426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016344257
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/gcb.12727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023669042
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/j.1365-2664.2006.01214.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048666686
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1365-2699.2006.01533.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020074659
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/j.1461-0248.2012.01764.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003939523
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/j.1472-4642.2008.00491.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006902278
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1600-0587.2008.05742.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030102374
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1600-0870.2010.00467.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029623147
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1175/2007jamc1636.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011952210
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1175/bams-88-9-1395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022461811
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1175/bams-d-12-00242.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053651592
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1175/bams-d-14-00176.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007889385
215 rdf:type schema:CreativeWork
216 https://doi.org/10.5194/hessd-9-5355-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053008417
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.414548.8 schema:alternateName French National Institute for Agricultural Research
219 schema:name Ecologie des Forêts Mediterraneennes, INRA, UR629, F-84914 Avignon, France
220 Laboratoire d’Écologie Systématique et Évolution (ESE), (UMR 8079 CNRS/Univ. Paris-Sud/AgroParisTech), Orsay, France
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.463916.f schema:alternateName Laboratoire de Météorologie Dynamique
223 schema:name Laboratoire de Météorologie Dynamique (LMD) - Institut Pierre Simon Laplace, (CNRS/Ecole Polytechnique/ENS/UPMC), Paris, France
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.494619.7 schema:alternateName Atmospheres Laboratory Environments, Observations Spatiales
226 schema:name Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace (CNRS/UVSQ/UPMC), Guyancourt, France
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.5196.b schema:alternateName National Agency For New Technologies, Energy and Sustainable Economic Development
229 schema:name Ente per le Nuove Technologie, l’Energia e l’Ambiente (ENEA), Climate Section, Rome, Italy
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
232 schema:name Laboratoire d’Écologie Systématique et Évolution (ESE), (UMR 8079 CNRS/Univ. Paris-Sud/AgroParisTech), Orsay, France
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...