Towards a typology for constrained climate model forecasts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12-06

AUTHORS

A. Lopez, E. B. Suckling, F. E. L. Otto, A. Lorenz, D. Rowlands, M. R. Allen

ABSTRACT

In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context. More... »

PAGES

15-29

References to SciGraph publications

  • 2010-11-26. Climate targets under uncertainty: challenges and remedies in CLIMATIC CHANGE
  • 2008-05-14. Uncertainty, learning and ambiguity in economic models on climate policy: some classical results and new directions in CLIMATIC CHANGE
  • 2003-10. Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates in CLIMATIC CHANGE
  • 2012-05-25. Quantifying future climate change in NATURE CLIMATE CHANGE
  • 1994-03. Signal-to-noise analysis of time-dependent greenhouse warming experiments in CLIMATE DYNAMICS
  • 1982. The Foundations of Expected Utility in NONE
  • 1999-06. Checking for model consistency in optimal fingerprinting in CLIMATE DYNAMICS
  • 2009-09-17. Climate feedbacks determined using radiative kernels in a multi-thousand member ensemble of AOGCMs in CLIMATE DYNAMICS
  • 2011-08-20. Sources of knowledge and ignorance in climate research in CLIMATIC CHANGE
  • 2002-04. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise in NATURE
  • 2007-01-19. Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations in CLIMATIC CHANGE
  • 2009-04. Greenhouse-gas emission targets for limiting global warming to 2 °C in NATURE
  • 2000-10. Quantifying the uncertainty in forecasts of anthropogenic climate change in NATURE
  • 2004-08. Quantification of modelling uncertainties in a large ensemble of climate change simulations in NATURE
  • 2002-04. Constraints on radiative forcing and future climate change from observations and climate model ensembles in NATURE
  • 1997-09. Multi-pattern fingerprint method for detection and attribution of climate change in CLIMATE DYNAMICS
  • 2010-01-13. The end of model democracy? in CLIMATIC CHANGE
  • 2005-01. Uncertainty in predictions of the climate response to rising levels of greenhouse gases in NATURE
  • 2012-03-25. Broad range of 2050 warming from an observationally constrained large climate model ensemble in NATURE GEOSCIENCE
  • 2003-02. Liability for climate change in NATURE
  • 1995-12. Low-cost long-term monitoring of global climate forcings and feedbacks in CLIMATIC CHANGE
  • 2013-04-17. Probabilistic projections of regional temperature and precipitation extending from observed time series in CLIMATIC CHANGE
  • 2003-08. Climate Change and the Irreversibility Effect – Combining Expected Utility and MaxiMin in ENVIRONMENTAL AND RESOURCE ECONOMICS
  • 2011-10-29. Multivariate probabilistic projections using imperfect climate models. Part II: robustness of methodological choices and consequences for climate sensitivity in CLIMATE DYNAMICS
  • 2011-11-17. Multivariate probabilistic projections using imperfect climate models part I: outline of methodology in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10584-014-1292-z

    DOI

    http://dx.doi.org/10.1007/s10584-014-1292-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015770993


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "AOPP, Oxford University, South Parks, OX1 3UP, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Centre for the Analysis of Time Series, London School of Economics, Houghton Street, WC2A 2AE, London, UK", 
                "AOPP, Oxford University, South Parks, OX1 3UP, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopez", 
            "givenName": "A.", 
            "id": "sg:person.014164235305.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014164235305.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for the Analysis of Time Series, London School of Economics, Houghton Street, WC2A 2AE, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.13063.37", 
              "name": [
                "Centre for the Analysis of Time Series, London School of Economics, Houghton Street, WC2A 2AE, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suckling", 
            "givenName": "E. B.", 
            "id": "sg:person.014055775142.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055775142.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Otto", 
            "givenName": "F. E. L.", 
            "id": "sg:person.01326463237.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326463237.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lorenz", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rowlands", 
            "givenName": "D.", 
            "id": "sg:person.016673016011.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673016011.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allen", 
            "givenName": "M. R.", 
            "id": "sg:person.0600474550.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-011-1209-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030658211", 
              "https://doi.org/10.1007/s00382-011-1209-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025054716419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016892659", 
              "https://doi.org/10.1023/a:1025054716419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416719a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016686487", 
              "https://doi.org/10.1038/416719a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1208-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010186182", 
              "https://doi.org/10.1007/s00382-011-1208-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/421891a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003018692", 
              "https://doi.org/10.1038/421891a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001284", 
              "https://doi.org/10.1038/nature03301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006156196", 
              "https://doi.org/10.1038/nature08017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007895196", 
              "https://doi.org/10.1007/s003820050291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0755-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049829283", 
              "https://doi.org/10.1007/s10584-013-0755-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016303772", 
              "https://doi.org/10.1038/35036559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0186-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030886565", 
              "https://doi.org/10.1007/s10584-011-0186-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-3329-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017309993", 
              "https://doi.org/10.1007/978-94-017-3329-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01095149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039030151", 
              "https://doi.org/10.1007/bf01095149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-010-9985-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029373037", 
              "https://doi.org/10.1007/s10584-010-9985-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026035305597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035832790", 
              "https://doi.org/10.1023/a:1026035305597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008860100", 
              "https://doi.org/10.1007/s003820050185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416723a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022821020", 
              "https://doi.org/10.1038/416723a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017181806", 
              "https://doi.org/10.1038/nclimate1414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0661-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034546573", 
              "https://doi.org/10.1007/s00382-009-0661-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043778742", 
              "https://doi.org/10.1038/ngeo1430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00204743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023450325", 
              "https://doi.org/10.1007/bf00204743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-008-9401-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019371041", 
              "https://doi.org/10.1007/s10584-008-9401-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-010-9800-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000824091", 
              "https://doi.org/10.1007/s10584-010-9800-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9156-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022087214", 
              "https://doi.org/10.1007/s10584-006-9156-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12-06", 
        "datePublishedReg": "2014-12-06", 
        "description": "In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10584-014-1292-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2756876", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2754371", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "132"
          }
        ], 
        "keywords": [
          "climate model forecasts", 
          "model forecasts", 
          "individual ensemble members", 
          "climate change context", 
          "possible classification system", 
          "precipitation changes", 
          "climate models", 
          "climate projections", 
          "forecast producers", 
          "ensemble members", 
          "model output", 
          "forecast generation", 
          "impact studies", 
          "forecasts", 
          "quantifying uncertainty", 
          "change context", 
          "uncertainty quantification", 
          "sampling strategy", 
          "possible connection", 
          "ensemble", 
          "uncertainty", 
          "projections", 
          "choice of metric", 
          "temperature", 
          "quantification", 
          "changes", 
          "impact", 
          "model", 
          "years", 
          "recent years", 
          "classification system", 
          "system", 
          "generation", 
          "connection", 
          "producers", 
          "output", 
          "diverse approaches", 
          "assumption", 
          "metrics", 
          "information", 
          "study", 
          "methodology", 
          "approach", 
          "briefly", 
          "role", 
          "members", 
          "typology", 
          "context", 
          "way", 
          "methodological assumptions", 
          "possible choices", 
          "choice", 
          "aim", 
          "review", 
          "strategies", 
          "decisions", 
          "same model output", 
          "climate model forecast classification system", 
          "model forecast classification system", 
          "forecast classification system", 
          "large scale projections", 
          "scale projections", 
          "climate forecast uncertainty quantification", 
          "forecast uncertainty quantification"
        ], 
        "name": "Towards a typology for constrained climate model forecasts", 
        "pagination": "15-29", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015770993"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10584-014-1292-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10584-014-1292-z", 
          "https://app.dimensions.ai/details/publication/pub.1015770993"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_617.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10584-014-1292-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1292-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1292-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1292-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1292-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    266 TRIPLES      22 PREDICATES      114 URIs      81 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10584-014-1292-z schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N250fdfc3fcab4f13b3429c4bccac07df
    4 schema:citation sg:pub.10.1007/978-94-017-3329-8
    5 sg:pub.10.1007/bf00204743
    6 sg:pub.10.1007/bf01095149
    7 sg:pub.10.1007/s00382-009-0661-1
    8 sg:pub.10.1007/s00382-011-1208-9
    9 sg:pub.10.1007/s00382-011-1209-8
    10 sg:pub.10.1007/s003820050185
    11 sg:pub.10.1007/s003820050291
    12 sg:pub.10.1007/s10584-006-9156-9
    13 sg:pub.10.1007/s10584-008-9401-5
    14 sg:pub.10.1007/s10584-010-9800-2
    15 sg:pub.10.1007/s10584-010-9985-4
    16 sg:pub.10.1007/s10584-011-0186-6
    17 sg:pub.10.1007/s10584-013-0755-y
    18 sg:pub.10.1023/a:1025054716419
    19 sg:pub.10.1023/a:1026035305597
    20 sg:pub.10.1038/35036559
    21 sg:pub.10.1038/416719a
    22 sg:pub.10.1038/416723a
    23 sg:pub.10.1038/421891a
    24 sg:pub.10.1038/nature02771
    25 sg:pub.10.1038/nature03301
    26 sg:pub.10.1038/nature08017
    27 sg:pub.10.1038/nclimate1414
    28 sg:pub.10.1038/ngeo1430
    29 schema:datePublished 2014-12-06
    30 schema:datePublishedReg 2014-12-06
    31 schema:description In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N473360a9c94941f6890ab5978f80cf4e
    36 Nd81e486e6a594a909ab36986c636846c
    37 sg:journal.1028211
    38 schema:keywords aim
    39 approach
    40 assumption
    41 briefly
    42 change context
    43 changes
    44 choice
    45 choice of metric
    46 classification system
    47 climate change context
    48 climate forecast uncertainty quantification
    49 climate model forecast classification system
    50 climate model forecasts
    51 climate models
    52 climate projections
    53 connection
    54 context
    55 decisions
    56 diverse approaches
    57 ensemble
    58 ensemble members
    59 forecast classification system
    60 forecast generation
    61 forecast producers
    62 forecast uncertainty quantification
    63 forecasts
    64 generation
    65 impact
    66 impact studies
    67 individual ensemble members
    68 information
    69 large scale projections
    70 members
    71 methodological assumptions
    72 methodology
    73 metrics
    74 model
    75 model forecast classification system
    76 model forecasts
    77 model output
    78 output
    79 possible choices
    80 possible classification system
    81 possible connection
    82 precipitation changes
    83 producers
    84 projections
    85 quantification
    86 quantifying uncertainty
    87 recent years
    88 review
    89 role
    90 same model output
    91 sampling strategy
    92 scale projections
    93 strategies
    94 study
    95 system
    96 temperature
    97 typology
    98 uncertainty
    99 uncertainty quantification
    100 way
    101 years
    102 schema:name Towards a typology for constrained climate model forecasts
    103 schema:pagination 15-29
    104 schema:productId N2bf6cb6a34f14fb3a9bdcab72f4434ce
    105 N47160abaca204e3f9cf8e0128a32889d
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015770993
    107 https://doi.org/10.1007/s10584-014-1292-z
    108 schema:sdDatePublished 2021-11-01T18:21
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher Ncc5cbc7e6ed5419fab678e637ab8f25e
    111 schema:url https://doi.org/10.1007/s10584-014-1292-z
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N250fdfc3fcab4f13b3429c4bccac07df rdf:first sg:person.014164235305.18
    116 rdf:rest Ndd23db9efaea4d08a899e9f47ac793be
    117 N2bf6cb6a34f14fb3a9bdcab72f4434ce schema:name doi
    118 schema:value 10.1007/s10584-014-1292-z
    119 rdf:type schema:PropertyValue
    120 N47160abaca204e3f9cf8e0128a32889d schema:name dimensions_id
    121 schema:value pub.1015770993
    122 rdf:type schema:PropertyValue
    123 N473360a9c94941f6890ab5978f80cf4e schema:volumeNumber 132
    124 rdf:type schema:PublicationVolume
    125 N505febd59b974848ba69810a83109759 rdf:first sg:person.01326463237.80
    126 rdf:rest N95324fb7f7a148c9b5f29fb5255e12fe
    127 N95324fb7f7a148c9b5f29fb5255e12fe rdf:first Nf3440f3f46d54b65a4171d4d5f691689
    128 rdf:rest N9efedea306284c67b895ae69c87b6afa
    129 N9efedea306284c67b895ae69c87b6afa rdf:first sg:person.016673016011.35
    130 rdf:rest Nbcc5786b433c49c986940cc0fe37f2ee
    131 Nbcc5786b433c49c986940cc0fe37f2ee rdf:first sg:person.0600474550.17
    132 rdf:rest rdf:nil
    133 Ncc5cbc7e6ed5419fab678e637ab8f25e schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 Nd81e486e6a594a909ab36986c636846c schema:issueNumber 1
    136 rdf:type schema:PublicationIssue
    137 Ndd23db9efaea4d08a899e9f47ac793be rdf:first sg:person.014055775142.50
    138 rdf:rest N505febd59b974848ba69810a83109759
    139 Nf3440f3f46d54b65a4171d4d5f691689 schema:affiliation grid-institutes:grid.4991.5
    140 schema:familyName Lorenz
    141 schema:givenName A.
    142 rdf:type schema:Person
    143 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Earth Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Atmospheric Sciences
    148 rdf:type schema:DefinedTerm
    149 sg:grant.2754371 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1292-z
    150 rdf:type schema:MonetaryGrant
    151 sg:grant.2756876 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1292-z
    152 rdf:type schema:MonetaryGrant
    153 sg:journal.1028211 schema:issn 0165-0009
    154 1573-1480
    155 schema:name Climatic Change
    156 schema:publisher Springer Nature
    157 rdf:type schema:Periodical
    158 sg:person.01326463237.80 schema:affiliation grid-institutes:grid.4991.5
    159 schema:familyName Otto
    160 schema:givenName F. E. L.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326463237.80
    162 rdf:type schema:Person
    163 sg:person.014055775142.50 schema:affiliation grid-institutes:grid.13063.37
    164 schema:familyName Suckling
    165 schema:givenName E. B.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055775142.50
    167 rdf:type schema:Person
    168 sg:person.014164235305.18 schema:affiliation grid-institutes:grid.4991.5
    169 schema:familyName Lopez
    170 schema:givenName A.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014164235305.18
    172 rdf:type schema:Person
    173 sg:person.016673016011.35 schema:affiliation grid-institutes:grid.4991.5
    174 schema:familyName Rowlands
    175 schema:givenName D.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673016011.35
    177 rdf:type schema:Person
    178 sg:person.0600474550.17 schema:affiliation grid-institutes:grid.4991.5
    179 schema:familyName Allen
    180 schema:givenName M. R.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
    182 rdf:type schema:Person
    183 sg:pub.10.1007/978-94-017-3329-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017309993
    184 https://doi.org/10.1007/978-94-017-3329-8
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/bf00204743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450325
    187 https://doi.org/10.1007/bf00204743
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf01095149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039030151
    190 https://doi.org/10.1007/bf01095149
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00382-009-0661-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034546573
    193 https://doi.org/10.1007/s00382-009-0661-1
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00382-011-1208-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010186182
    196 https://doi.org/10.1007/s00382-011-1208-9
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00382-011-1209-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030658211
    199 https://doi.org/10.1007/s00382-011-1209-8
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s003820050185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860100
    202 https://doi.org/10.1007/s003820050185
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s003820050291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007895196
    205 https://doi.org/10.1007/s003820050291
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s10584-006-9156-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087214
    208 https://doi.org/10.1007/s10584-006-9156-9
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s10584-008-9401-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019371041
    211 https://doi.org/10.1007/s10584-008-9401-5
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s10584-010-9800-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000824091
    214 https://doi.org/10.1007/s10584-010-9800-2
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s10584-010-9985-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029373037
    217 https://doi.org/10.1007/s10584-010-9985-4
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s10584-011-0186-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030886565
    220 https://doi.org/10.1007/s10584-011-0186-6
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s10584-013-0755-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049829283
    223 https://doi.org/10.1007/s10584-013-0755-y
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1025054716419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016892659
    226 https://doi.org/10.1023/a:1025054716419
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
    229 https://doi.org/10.1023/a:1026035305597
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
    232 https://doi.org/10.1038/35036559
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/416719a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
    235 https://doi.org/10.1038/416719a
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/416723a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022821020
    238 https://doi.org/10.1038/416723a
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/421891a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003018692
    241 https://doi.org/10.1038/421891a
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
    244 https://doi.org/10.1038/nature02771
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nature03301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001284
    247 https://doi.org/10.1038/nature03301
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nature08017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006156196
    250 https://doi.org/10.1038/nature08017
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nclimate1414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017181806
    253 https://doi.org/10.1038/nclimate1414
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ngeo1430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043778742
    256 https://doi.org/10.1038/ngeo1430
    257 rdf:type schema:CreativeWork
    258 grid-institutes:grid.13063.37 schema:alternateName Centre for the Analysis of Time Series, London School of Economics, Houghton Street, WC2A 2AE, London, UK
    259 schema:name Centre for the Analysis of Time Series, London School of Economics, Houghton Street, WC2A 2AE, London, UK
    260 rdf:type schema:Organization
    261 grid-institutes:grid.4991.5 schema:alternateName AOPP, Oxford University, South Parks, OX1 3UP, Oxford, UK
    262 School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK
    263 schema:name AOPP, Oxford University, South Parks, OX1 3UP, Oxford, UK
    264 Centre for the Analysis of Time Series, London School of Economics, Houghton Street, WC2A 2AE, London, UK
    265 School of Geography and the Environment, Oxford University, South Parks Rd, Oxford, OX1 3NP, UK
    266 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...