Modelling impacts of climate change on global food security View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02

AUTHORS

Terence P. Dawson, Anita H. Perryman, Tom M. Osborne

ABSTRACT

The United Nations Food and Agriculture Organization (FAO) estimate that nearly 900 million people on the planet are suffering from chronic hunger. This state of affairs led to the making of the United Nations Millennium Development Goals in 2000, having the first goal to “Eradicate extreme poverty and hunger” with a target to halve the proportion of people who suffer from hunger. However, projections of a rapidly growing population, coupled with global climate change, is expected to have significant negative impacts on food security. To investigate this prospect, a modelling framework was developed under the QUEST-GSI programme, which we have termed FEEDME (Food Estimation and Export for Diet and Malnutrition Evaluation). The model uses country-level Food Balance Sheets (FBS) to determine mean calories on a per-capita basis, and a coefficient of variation to account for the degree of inequality in access to food across national populations. Calorific values of individual food items in the FBS of countries were modified by revision of crop yields and population changes under the SRES A1B climate change and social-economic scenarios respectively for 2050, 2085 and 2100. Under a no-climate change scenario, based upon projected changes in population and agricultural land use only, results show that 31 % (2.5 billion people by 2050) of the global population is at risk of undernourishment if no adaptation or agricultural innovation is made in the intervening years. An additional 21 % (1.7 billion people) is at risk of undernourishment by 2050 when climate change is taken into account. However, the model does not account for future trends in technology, improved crop varieties or agricultural trade interventions, although it is clear that all of these adaptation strategies will need to be embraced on a global scale if society is to ensure adequate food supplies for a projected global population of greater than 9 billion people. More... »

PAGES

429-440

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-014-1277-y

DOI

http://dx.doi.org/10.1007/s10584-014-1277-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039555051


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1603", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Demography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Dundee", 
          "id": "https://www.grid.ac/institutes/grid.8241.f", 
          "name": [
            "School of the Environment, University of Dundee, DD1 4HN, Dundee, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dawson", 
        "givenName": "Terence P.", 
        "id": "sg:person.0674361170.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674361170.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "School of Geography and Environment, University of Southampton, University Road, SO17 1BJ, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perryman", 
        "givenName": "Anita H.", 
        "id": "sg:person.014272641305.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014272641305.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "National Centre for Atmospheric Research, Walker Institute, University of Reading, RG6 6BB, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osborne", 
        "givenName": "Tom M.", 
        "id": "sg:person.016373431173.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373431173.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.agwat.2009.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000908924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1204531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001191768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1200-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003753016", 
          "https://doi.org/10.1007/978-94-011-1200-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1200-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003753016", 
          "https://doi.org/10.1007/978-94-011-1200-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.environ.041008.093740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003889517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2010.02217.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005138639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2010.02217.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005138639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1116437108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010458316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2005.1751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012922042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0091-7435(84)90017-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013042878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2012.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014277838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2004.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021045417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701825104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022937339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2004.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025303712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9172-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026244696", 
          "https://doi.org/10.1007/s10584-006-9172-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-9192(96)00005-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026544041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0029665199000312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028738717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gb003435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029011411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2005.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043420767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2007.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047913610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048131164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/133.11.3907s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076611966"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "The United Nations Food and Agriculture Organization (FAO) estimate that nearly 900 million people on the planet are suffering from chronic hunger. This state of affairs led to the making of the United Nations Millennium Development Goals in 2000, having the first goal to \u201cEradicate extreme poverty and hunger\u201d with a target to halve the proportion of people who suffer from hunger. However, projections of a rapidly growing population, coupled with global climate change, is expected to have significant negative impacts on food security. To investigate this prospect, a modelling framework was developed under the QUEST-GSI programme, which we have termed FEEDME (Food Estimation and Export for Diet and Malnutrition Evaluation). The model uses country-level Food Balance Sheets (FBS) to determine mean calories on a per-capita basis, and a coefficient of variation to account for the degree of inequality in access to food across national populations. Calorific values of individual food items in the FBS of countries were modified by revision of crop yields and population changes under the SRES A1B climate change and social-economic scenarios respectively for 2050, 2085 and 2100. Under a no-climate change scenario, based upon projected changes in population and agricultural land use only, results show that 31 % (2.5 billion people by 2050) of the global population is at risk of undernourishment if no adaptation or agricultural innovation is made in the intervening years. An additional 21 % (1.7 billion people) is at risk of undernourishment by 2050 when climate change is taken into account. However, the model does not account for future trends in technology, improved crop varieties or agricultural trade interventions, although it is clear that all of these adaptation strategies will need to be embraced on a global scale if society is to ensure adequate food supplies for a projected global population of greater than 9 billion people.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10584-014-1277-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2774290", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2751833", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2775829", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2773753", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2777611", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2755224", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2782586", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2784157", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2751981", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2771027", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2766728", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "134"
      }
    ], 
    "name": "Modelling impacts of climate change on global food security", 
    "pagination": "429-440", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bc6be1f336c30877f3ae4a4cbe266d1cde83394e43d45930c90154fd2730529c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-014-1277-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039555051"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-014-1277-y", 
      "https://app.dimensions.ai/details/publication/pub.1039555051"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10584-014-1277-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1277-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1277-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1277-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-014-1277-y'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-014-1277-y schema:about anzsrc-for:16
2 anzsrc-for:1603
3 schema:author N2400fa2b269648e087ac8f105f928214
4 schema:citation sg:pub.10.1007/978-94-011-1200-0_4
5 sg:pub.10.1007/s10584-006-9172-9
6 https://doi.org/10.1016/0091-7435(84)90017-3
7 https://doi.org/10.1016/0306-9192(96)00005-x
8 https://doi.org/10.1016/j.agee.2004.12.003
9 https://doi.org/10.1016/j.agee.2005.11.027
10 https://doi.org/10.1016/j.agrformet.2004.01.002
11 https://doi.org/10.1016/j.agrformet.2007.09.012
12 https://doi.org/10.1016/j.agrformet.2012.07.006
13 https://doi.org/10.1016/j.agwat.2009.06.020
14 https://doi.org/10.1017/s0029665199000312
15 https://doi.org/10.1029/2008gb003435
16 https://doi.org/10.1073/pnas.0701825104
17 https://doi.org/10.1073/pnas.1116437108
18 https://doi.org/10.1093/jn/133.11.3907s
19 https://doi.org/10.1098/rstb.2005.1751
20 https://doi.org/10.1111/j.1365-2486.2010.02217.x
21 https://doi.org/10.1126/science.1185383
22 https://doi.org/10.1126/science.1204531
23 https://doi.org/10.1146/annurev.environ.041008.093740
24 schema:datePublished 2016-02
25 schema:datePublishedReg 2016-02-01
26 schema:description The United Nations Food and Agriculture Organization (FAO) estimate that nearly 900 million people on the planet are suffering from chronic hunger. This state of affairs led to the making of the United Nations Millennium Development Goals in 2000, having the first goal to “Eradicate extreme poverty and hunger” with a target to halve the proportion of people who suffer from hunger. However, projections of a rapidly growing population, coupled with global climate change, is expected to have significant negative impacts on food security. To investigate this prospect, a modelling framework was developed under the QUEST-GSI programme, which we have termed FEEDME (Food Estimation and Export for Diet and Malnutrition Evaluation). The model uses country-level Food Balance Sheets (FBS) to determine mean calories on a per-capita basis, and a coefficient of variation to account for the degree of inequality in access to food across national populations. Calorific values of individual food items in the FBS of countries were modified by revision of crop yields and population changes under the SRES A1B climate change and social-economic scenarios respectively for 2050, 2085 and 2100. Under a no-climate change scenario, based upon projected changes in population and agricultural land use only, results show that 31 % (2.5 billion people by 2050) of the global population is at risk of undernourishment if no adaptation or agricultural innovation is made in the intervening years. An additional 21 % (1.7 billion people) is at risk of undernourishment by 2050 when climate change is taken into account. However, the model does not account for future trends in technology, improved crop varieties or agricultural trade interventions, although it is clear that all of these adaptation strategies will need to be embraced on a global scale if society is to ensure adequate food supplies for a projected global population of greater than 9 billion people.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N84cdf359cd2a4e89a14e2a974d6c88a5
31 Nc2beb8fba3424deda9acbc4efb22676f
32 sg:journal.1028211
33 schema:name Modelling impacts of climate change on global food security
34 schema:pagination 429-440
35 schema:productId N04b61e5c220f416082872700eee79b04
36 N13b647079b7547acb847286a5bd24ff0
37 N30077084d0eb4ccdb624c1b3b93d0bdd
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039555051
39 https://doi.org/10.1007/s10584-014-1277-y
40 schema:sdDatePublished 2019-04-10T16:34
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N50841a22420a4a02bc00de51a2dea67e
43 schema:url http://link.springer.com/10.1007/s10584-014-1277-y
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N04b61e5c220f416082872700eee79b04 schema:name readcube_id
48 schema:value bc6be1f336c30877f3ae4a4cbe266d1cde83394e43d45930c90154fd2730529c
49 rdf:type schema:PropertyValue
50 N13b647079b7547acb847286a5bd24ff0 schema:name doi
51 schema:value 10.1007/s10584-014-1277-y
52 rdf:type schema:PropertyValue
53 N1bd4db62a0bc4e928e5cced7a9979680 rdf:first sg:person.014272641305.74
54 rdf:rest N50662bc395db4e529d245836d410dca5
55 N2400fa2b269648e087ac8f105f928214 rdf:first sg:person.0674361170.13
56 rdf:rest N1bd4db62a0bc4e928e5cced7a9979680
57 N30077084d0eb4ccdb624c1b3b93d0bdd schema:name dimensions_id
58 schema:value pub.1039555051
59 rdf:type schema:PropertyValue
60 N50662bc395db4e529d245836d410dca5 rdf:first sg:person.016373431173.66
61 rdf:rest rdf:nil
62 N50841a22420a4a02bc00de51a2dea67e schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N84cdf359cd2a4e89a14e2a974d6c88a5 schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 Nc2beb8fba3424deda9acbc4efb22676f schema:volumeNumber 134
67 rdf:type schema:PublicationVolume
68 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
69 schema:name Studies in Human Society
70 rdf:type schema:DefinedTerm
71 anzsrc-for:1603 schema:inDefinedTermSet anzsrc-for:
72 schema:name Demography
73 rdf:type schema:DefinedTerm
74 sg:grant.2751833 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
75 rdf:type schema:MonetaryGrant
76 sg:grant.2751981 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
77 rdf:type schema:MonetaryGrant
78 sg:grant.2755224 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
79 rdf:type schema:MonetaryGrant
80 sg:grant.2766728 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
81 rdf:type schema:MonetaryGrant
82 sg:grant.2771027 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
83 rdf:type schema:MonetaryGrant
84 sg:grant.2773753 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
85 rdf:type schema:MonetaryGrant
86 sg:grant.2774290 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
87 rdf:type schema:MonetaryGrant
88 sg:grant.2775829 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
89 rdf:type schema:MonetaryGrant
90 sg:grant.2777611 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
91 rdf:type schema:MonetaryGrant
92 sg:grant.2782586 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
93 rdf:type schema:MonetaryGrant
94 sg:grant.2784157 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-014-1277-y
95 rdf:type schema:MonetaryGrant
96 sg:journal.1028211 schema:issn 0165-0009
97 1573-1480
98 schema:name Climatic Change
99 rdf:type schema:Periodical
100 sg:person.014272641305.74 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
101 schema:familyName Perryman
102 schema:givenName Anita H.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014272641305.74
104 rdf:type schema:Person
105 sg:person.016373431173.66 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
106 schema:familyName Osborne
107 schema:givenName Tom M.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373431173.66
109 rdf:type schema:Person
110 sg:person.0674361170.13 schema:affiliation https://www.grid.ac/institutes/grid.8241.f
111 schema:familyName Dawson
112 schema:givenName Terence P.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674361170.13
114 rdf:type schema:Person
115 sg:pub.10.1007/978-94-011-1200-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003753016
116 https://doi.org/10.1007/978-94-011-1200-0_4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10584-006-9172-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026244696
119 https://doi.org/10.1007/s10584-006-9172-9
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0091-7435(84)90017-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013042878
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0306-9192(96)00005-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026544041
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.agee.2004.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021045417
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.agee.2005.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043420767
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.agrformet.2004.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025303712
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.agrformet.2007.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913610
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.agrformet.2012.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014277838
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.agwat.2009.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000908924
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/s0029665199000312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028738717
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1029/2008gb003435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029011411
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.0701825104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022937339
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.1116437108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010458316
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/jn/133.11.3907s schema:sameAs https://app.dimensions.ai/details/publication/pub.1076611966
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1098/rstb.2005.1751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012922042
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/j.1365-2486.2010.02217.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005138639
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.1185383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048131164
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1204531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001191768
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1146/annurev.environ.041008.093740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003889517
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
158 schema:name School of Geography and Environment, University of Southampton, University Road, SO17 1BJ, Southampton, UK
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.8241.f schema:alternateName University of Dundee
161 schema:name School of the Environment, University of Dundee, DD1 4HN, Dundee, UK
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
164 schema:name National Centre for Atmospheric Research, Walker Institute, University of Reading, RG6 6BB, Reading, UK
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...