Pattern scaling: Its strengths and limitations, and an update on the latest model simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-01-08

AUTHORS

Claudia Tebaldi, Julie M. Arblaster

ABSTRACT

We review the ideas behind the pattern scaling technique, and focus on its value and limitations given its use for impact assessment and within integrated assessment models. We present estimates of patterns for temperature and precipitation change from the latest transient simulations available from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), focusing on multi-model mean patterns, and characterizing the sources of variability of these patterns across models and scenarios. The patterns are compared to those obtained from the previous set of experiments, under CMIP3. We estimate the significance of the emerging differences between CMIP3 and CMIP5 results through a bootstrap exercise, while also taking into account the fundamental differences in scenario and model ensemble composition. All in all, the robustness of the geographical features in patterns of temperature and precipitation, when computed as multi-model means, is confirmed by this comparison. The intensity of the change (in both the warmer and cooler areas with respect to global temperature change, and the drier and wetter regions) is overall heightened per degree of global warming in the ensemble mean of the new simulations. The presence of stabilized scenarios in the new set of simulations allows investigation of the performance of the technique once the system has gotten close to equilibrium. Overall, the well established validity of the technique in approximating the forced signal of change under increasing concentrations of greenhouse gases is confirmed. More... »

PAGES

459-471

References to SciGraph publications

  • 2008-10-14. Future changes in daily summer temperature variability: driving processes and role for temperature extremes in CLIMATE DYNAMICS
  • 2012-06-20. Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections in CLIMATE DYNAMICS
  • 1999-03. Towards the Construction of Climate Change Scenarios in CLIMATIC CHANGE
  • 2003-10. Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates in CLIMATIC CHANGE
  • 2006-09. Land–atmosphere coupling and climate change in Europe in NATURE
  • 2010-01-13. Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations in CLIMATIC CHANGE
  • 2007-03-21. GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying a super-ensemble pattern-scaling method in CLIMATIC CHANGE
  • 2010-04-11. The potential to narrow uncertainty in projections of regional precipitation change in CLIMATE DYNAMICS
  • 2012-10-28. Robustness and uncertainties in the new CMIP5 climate model projections in NATURE CLIMATE CHANGE
  • 2010-02. The next generation of scenarios for climate change research and assessment in NATURE
  • 2012-10-26. Communication of the role of natural variability in future North American climate in NATURE CLIMATE CHANGE
  • 2012-03-23. Temperature scaling pattern dependence on representative concentration pathway emission scenarios in CLIMATIC CHANGE
  • 2010-01-07. Emission scenario dependencies in climate change assessments of the hydrological cycle in CLIMATIC CHANGE
  • 2012-01-29. Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments in CLIMATE DYNAMICS
  • 2012-10-30. A step-response approach for predicting and understanding non-linear precipitation changes in CLIMATE DYNAMICS
  • 2006-04-25. Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations in CLIMATE DYNAMICS
  • 2010-12-31. Uncertainty in climate change projections: the role of internal variability in CLIMATE DYNAMICS
  • 2011-05-24. Assessing the strength of regional changes in near-surface climate associated with a global warming of 2°C in CLIMATIC CHANGE
  • 2008-01-08. Climatic changes associated with a global “2°C-stabilization” scenario simulated by the ECHAM5/MPI-OM coupled climate model in CLIMATE DYNAMICS
  • 2011-08-05. The representative concentration pathways: an overview in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10584-013-1032-9

    DOI

    http://dx.doi.org/10.1007/s10584-013-1032-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023842732


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Climate and Global Dynamics, National Center for Atmospheric Research (NCAR), 1850 Table Mesa dr., 80305, Boulder, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.57828.30", 
              "name": [
                "Climate and Global Dynamics, National Center for Atmospheric Research (NCAR), 1850 Table Mesa dr., 80305, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tebaldi", 
            "givenName": "Claudia", 
            "id": "sg:person.015561030205.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561030205.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NCAR and Bureau of Meteorology, Melbourne, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1527.1", 
              "name": [
                "NCAR and Bureau of Meteorology, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arblaster", 
            "givenName": "Julie M.", 
            "id": "sg:person.011452203137.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452203137.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-012-1287-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048486891", 
              "https://doi.org/10.1007/s00382-012-1287-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0810-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001203373", 
              "https://doi.org/10.1007/s00382-010-0810-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026035305597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035832790", 
              "https://doi.org/10.1023/a:1026035305597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0430-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008166853", 
              "https://doi.org/10.1007/s10584-012-0430-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028376412", 
              "https://doi.org/10.1038/nclimate1562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006069800", 
              "https://doi.org/10.1038/nature08823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0352-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051943278", 
              "https://doi.org/10.1007/s00382-007-0352-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0142-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052171603", 
              "https://doi.org/10.1007/s00382-006-0142-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9222-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002503490", 
              "https://doi.org/10.1007/s10584-006-9222-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1571-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012359911", 
              "https://doi.org/10.1007/s00382-012-1571-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0473-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042898397", 
              "https://doi.org/10.1007/s00382-008-0473-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005466909820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045135939", 
              "https://doi.org/10.1023/a:1005466909820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0076-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003939402", 
              "https://doi.org/10.1007/s10584-011-0076-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0148-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021241034", 
              "https://doi.org/10.1007/s10584-011-0148-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0977-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021861148", 
              "https://doi.org/10.1007/s00382-010-0977-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9765-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045216985", 
              "https://doi.org/10.1007/s10584-009-9765-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043618867", 
              "https://doi.org/10.1038/nature05095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1410-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050447974", 
              "https://doi.org/10.1007/s00382-012-1410-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9737-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018059990", 
              "https://doi.org/10.1007/s10584-009-9737-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002144786", 
              "https://doi.org/10.1038/nclimate1716"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01-08", 
        "datePublishedReg": "2014-01-08", 
        "description": "We review the ideas behind the pattern scaling technique, and focus on its value and limitations given its use for impact assessment and within integrated assessment models. We present estimates of patterns for temperature and precipitation change from the latest transient simulations available from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), focusing on multi-model mean patterns, and characterizing the sources of variability of these patterns across models and scenarios. The patterns are compared to those obtained from the previous set of experiments, under CMIP3. We estimate the significance of the emerging differences between CMIP3 and CMIP5 results through a bootstrap exercise, while also taking into account the fundamental differences in scenario and model ensemble composition. All in all, the robustness of the geographical features in patterns of temperature and precipitation, when computed as multi-model means, is confirmed by this comparison. The intensity of the change (in both the warmer and cooler areas with respect to global temperature change, and the drier and wetter regions) is overall heightened per degree of global warming in the ensemble mean of the new simulations. The presence of stabilized scenarios in the new set of simulations allows investigation of the performance of the technique once the system has gotten close to equilibrium. Overall, the well established validity of the technique in approximating the forced signal of change under increasing concentrations of greenhouse gases is confirmed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10584-013-1032-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8692511", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4320585", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "122"
          }
        ], 
        "keywords": [
          "Coupled Model Inter-comparison Project Phase 5", 
          "Model Inter-comparison Project Phase 5", 
          "multi-model mean", 
          "signals of change", 
          "patterns of temperature", 
          "precipitation changes", 
          "phase 5", 
          "ensemble mean", 
          "model simulations", 
          "mean pattern", 
          "greenhouse gases", 
          "global warming", 
          "integrated assessment model", 
          "present estimates", 
          "CMIP3", 
          "bootstrap exercise", 
          "new simulations", 
          "geographical features", 
          "ensemble composition", 
          "impact assessment", 
          "sources of variability", 
          "transient simulation", 
          "warming", 
          "precipitation", 
          "variability", 
          "scenarios", 
          "patterns", 
          "assessment model", 
          "changes", 
          "temperature", 
          "gases", 
          "simulations", 
          "composition", 
          "fundamental differences", 
          "estimates", 
          "source", 
          "new set", 
          "model", 
          "previous set", 
          "intensity", 
          "concentration", 
          "equilibrium", 
          "set", 
          "features", 
          "values", 
          "comparison", 
          "differences", 
          "assessment", 
          "means", 
          "investigation", 
          "limitations", 
          "significance", 
          "technique", 
          "signals", 
          "presence", 
          "degree", 
          "experiments", 
          "account", 
          "system", 
          "scaling technique", 
          "strength", 
          "use", 
          "update", 
          "idea", 
          "robustness", 
          "validity", 
          "performance", 
          "exercise"
        ], 
        "name": "Pattern scaling: Its strengths and limitations, and an update on the latest model simulations", 
        "pagination": "459-471", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023842732"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10584-013-1032-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10584-013-1032-9", 
          "https://app.dimensions.ai/details/publication/pub.1023842732"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_637.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10584-013-1032-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-013-1032-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-013-1032-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-013-1032-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-013-1032-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      22 PREDICATES      113 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10584-013-1032-9 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N36da707c5c364f0c8c83452eacec6656
    4 schema:citation sg:pub.10.1007/s00382-006-0142-8
    5 sg:pub.10.1007/s00382-007-0352-8
    6 sg:pub.10.1007/s00382-008-0473-8
    7 sg:pub.10.1007/s00382-010-0810-6
    8 sg:pub.10.1007/s00382-010-0977-x
    9 sg:pub.10.1007/s00382-012-1287-2
    10 sg:pub.10.1007/s00382-012-1410-4
    11 sg:pub.10.1007/s00382-012-1571-1
    12 sg:pub.10.1007/s10584-006-9222-3
    13 sg:pub.10.1007/s10584-009-9737-5
    14 sg:pub.10.1007/s10584-009-9765-1
    15 sg:pub.10.1007/s10584-011-0076-y
    16 sg:pub.10.1007/s10584-011-0148-z
    17 sg:pub.10.1007/s10584-012-0430-8
    18 sg:pub.10.1023/a:1005466909820
    19 sg:pub.10.1023/a:1026035305597
    20 sg:pub.10.1038/nature05095
    21 sg:pub.10.1038/nature08823
    22 sg:pub.10.1038/nclimate1562
    23 sg:pub.10.1038/nclimate1716
    24 schema:datePublished 2014-01-08
    25 schema:datePublishedReg 2014-01-08
    26 schema:description We review the ideas behind the pattern scaling technique, and focus on its value and limitations given its use for impact assessment and within integrated assessment models. We present estimates of patterns for temperature and precipitation change from the latest transient simulations available from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), focusing on multi-model mean patterns, and characterizing the sources of variability of these patterns across models and scenarios. The patterns are compared to those obtained from the previous set of experiments, under CMIP3. We estimate the significance of the emerging differences between CMIP3 and CMIP5 results through a bootstrap exercise, while also taking into account the fundamental differences in scenario and model ensemble composition. All in all, the robustness of the geographical features in patterns of temperature and precipitation, when computed as multi-model means, is confirmed by this comparison. The intensity of the change (in both the warmer and cooler areas with respect to global temperature change, and the drier and wetter regions) is overall heightened per degree of global warming in the ensemble mean of the new simulations. The presence of stabilized scenarios in the new set of simulations allows investigation of the performance of the technique once the system has gotten close to equilibrium. Overall, the well established validity of the technique in approximating the forced signal of change under increasing concentrations of greenhouse gases is confirmed.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N06a8ad537c6542abaf8f3844a759a60b
    31 Nffbce3af5c244cd9a49c73bbc0ce4905
    32 sg:journal.1028211
    33 schema:keywords CMIP3
    34 Coupled Model Inter-comparison Project Phase 5
    35 Model Inter-comparison Project Phase 5
    36 account
    37 assessment
    38 assessment model
    39 bootstrap exercise
    40 changes
    41 comparison
    42 composition
    43 concentration
    44 degree
    45 differences
    46 ensemble composition
    47 ensemble mean
    48 equilibrium
    49 estimates
    50 exercise
    51 experiments
    52 features
    53 fundamental differences
    54 gases
    55 geographical features
    56 global warming
    57 greenhouse gases
    58 idea
    59 impact assessment
    60 integrated assessment model
    61 intensity
    62 investigation
    63 limitations
    64 mean pattern
    65 means
    66 model
    67 model simulations
    68 multi-model mean
    69 new set
    70 new simulations
    71 patterns
    72 patterns of temperature
    73 performance
    74 phase 5
    75 precipitation
    76 precipitation changes
    77 presence
    78 present estimates
    79 previous set
    80 robustness
    81 scaling technique
    82 scenarios
    83 set
    84 signals
    85 signals of change
    86 significance
    87 simulations
    88 source
    89 sources of variability
    90 strength
    91 system
    92 technique
    93 temperature
    94 transient simulation
    95 update
    96 use
    97 validity
    98 values
    99 variability
    100 warming
    101 schema:name Pattern scaling: Its strengths and limitations, and an update on the latest model simulations
    102 schema:pagination 459-471
    103 schema:productId N0015f1ab699d4cafba3bcbe821e7bcd2
    104 N1ce9fa9052424b95b1aa583965ec68af
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023842732
    106 https://doi.org/10.1007/s10584-013-1032-9
    107 schema:sdDatePublished 2022-06-01T22:13
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher Nc04132dea3dd4a8f84b3fe609634b7f1
    110 schema:url https://doi.org/10.1007/s10584-013-1032-9
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N0015f1ab699d4cafba3bcbe821e7bcd2 schema:name doi
    115 schema:value 10.1007/s10584-013-1032-9
    116 rdf:type schema:PropertyValue
    117 N06a8ad537c6542abaf8f3844a759a60b schema:issueNumber 3
    118 rdf:type schema:PublicationIssue
    119 N1ce9fa9052424b95b1aa583965ec68af schema:name dimensions_id
    120 schema:value pub.1023842732
    121 rdf:type schema:PropertyValue
    122 N36da707c5c364f0c8c83452eacec6656 rdf:first sg:person.015561030205.29
    123 rdf:rest N9e885a4479464b86b5e46ff4c357c569
    124 N9e885a4479464b86b5e46ff4c357c569 rdf:first sg:person.011452203137.38
    125 rdf:rest rdf:nil
    126 Nc04132dea3dd4a8f84b3fe609634b7f1 schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 Nffbce3af5c244cd9a49c73bbc0ce4905 schema:volumeNumber 122
    129 rdf:type schema:PublicationVolume
    130 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Earth Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Atmospheric Sciences
    135 rdf:type schema:DefinedTerm
    136 sg:grant.4320585 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-013-1032-9
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.8692511 http://pending.schema.org/fundedItem sg:pub.10.1007/s10584-013-1032-9
    139 rdf:type schema:MonetaryGrant
    140 sg:journal.1028211 schema:issn 0165-0009
    141 1573-1480
    142 schema:name Climatic Change
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.011452203137.38 schema:affiliation grid-institutes:grid.1527.1
    146 schema:familyName Arblaster
    147 schema:givenName Julie M.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452203137.38
    149 rdf:type schema:Person
    150 sg:person.015561030205.29 schema:affiliation grid-institutes:grid.57828.30
    151 schema:familyName Tebaldi
    152 schema:givenName Claudia
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561030205.29
    154 rdf:type schema:Person
    155 sg:pub.10.1007/s00382-006-0142-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052171603
    156 https://doi.org/10.1007/s00382-006-0142-8
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00382-007-0352-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051943278
    159 https://doi.org/10.1007/s00382-007-0352-8
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00382-008-0473-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042898397
    162 https://doi.org/10.1007/s00382-008-0473-8
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
    165 https://doi.org/10.1007/s00382-010-0810-6
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
    168 https://doi.org/10.1007/s00382-010-0977-x
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00382-012-1287-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486891
    171 https://doi.org/10.1007/s00382-012-1287-2
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00382-012-1410-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050447974
    174 https://doi.org/10.1007/s00382-012-1410-4
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s00382-012-1571-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012359911
    177 https://doi.org/10.1007/s00382-012-1571-1
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10584-006-9222-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002503490
    180 https://doi.org/10.1007/s10584-006-9222-3
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s10584-009-9737-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059990
    183 https://doi.org/10.1007/s10584-009-9737-5
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s10584-009-9765-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045216985
    186 https://doi.org/10.1007/s10584-009-9765-1
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s10584-011-0076-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003939402
    189 https://doi.org/10.1007/s10584-011-0076-y
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10584-011-0148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241034
    192 https://doi.org/10.1007/s10584-011-0148-z
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10584-012-0430-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008166853
    195 https://doi.org/10.1007/s10584-012-0430-8
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1023/a:1005466909820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135939
    198 https://doi.org/10.1023/a:1005466909820
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
    201 https://doi.org/10.1023/a:1026035305597
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature05095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618867
    204 https://doi.org/10.1038/nature05095
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
    207 https://doi.org/10.1038/nature08823
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nclimate1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028376412
    210 https://doi.org/10.1038/nclimate1562
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nclimate1716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144786
    213 https://doi.org/10.1038/nclimate1716
    214 rdf:type schema:CreativeWork
    215 grid-institutes:grid.1527.1 schema:alternateName NCAR and Bureau of Meteorology, Melbourne, Australia
    216 schema:name NCAR and Bureau of Meteorology, Melbourne, Australia
    217 rdf:type schema:Organization
    218 grid-institutes:grid.57828.30 schema:alternateName Climate and Global Dynamics, National Center for Atmospheric Research (NCAR), 1850 Table Mesa dr., 80305, Boulder, CO, USA
    219 schema:name Climate and Global Dynamics, National Center for Atmospheric Research (NCAR), 1850 Table Mesa dr., 80305, Boulder, CO, USA
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...