Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10

AUTHORS

D. I. Jeong, A. St-Hilaire, T. B. M. J. Ouarda, P. Gachon

ABSTRACT

This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Québec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16 % ~ 22 % of total variance in daily precipitation occurrence series and 13 % ~ 25 % of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model. More... »

PAGES

567-591

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-012-0451-3

DOI

http://dx.doi.org/10.1007/s10584-012-0451-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034812695


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "INRS-ETE, University of Qu\u00e9bec, 490 de la Couronne, G1K 9A9, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "D. I.", 
        "id": "sg:person.012667234731.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012667234731.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "INRS-ETE, University of Qu\u00e9bec, 490 de la Couronne, G1K 9A9, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "St-Hilaire", 
        "givenName": "A.", 
        "id": "sg:person.0637160232.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637160232.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Khalifa University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440568.b", 
          "name": [
            "INRS-ETE, University of Qu\u00e9bec, 490 de la Couronne, G1K 9A9, Qu\u00e9bec, Canada", 
            "Water & Environmental Engineering, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouarda", 
        "givenName": "T. B. M. J.", 
        "id": "sg:person.015000560134.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000560134.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environment Canada", 
          "id": "https://www.grid.ac/institutes/grid.410334.1", 
          "name": [
            "Atmospheric Science and Technology Directorate, Canadian Centre for Climate Modelling and Analysis (CCCMA) Section, Climate Research Division, Environment Canada, Montr\u00e9al, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gachon", 
        "givenName": "P.", 
        "id": "sg:person.016107131141.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107131141.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1364-8152(01)00060-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000176716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005871835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-011-0523-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006998490", 
          "https://doi.org/10.1007/s00477-011-0523-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-011-0523-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006998490", 
          "https://doi.org/10.1007/s00477-011-0523-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004wr003739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010861906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011849757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012797820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013505223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2004)017<0640:soldtc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014444572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2007.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015863766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(19970630)17:8<875::aid-joc164>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018448899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001wr000291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018482034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019268506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<2474:tamaas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021128850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021471302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<4422:psoiac>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027112058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<3505:otuoii>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027924628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028874226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030173295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033506330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033506330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-007-0299-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035946721", 
          "https://doi.org/10.1007/s00704-007-0299-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-007-0299-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035946721", 
          "https://doi.org/10.1007/s00704-007-0299-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2004.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036306676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039713955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(97)00130-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040150267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-011-0490-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040487426", 
          "https://doi.org/10.1007/s00704-011-0490-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<3529:gratsa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040913703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-87-3-343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041490498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/nr.2010.11002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041579505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<1731:sdodti>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046327610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(98)00186-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049607708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1999)127<1954:edreat>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050580282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052823474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07055900.1999.9649621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053349049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/90.2.445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030913339902300204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063817482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030913339902300204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063817482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr011125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071158924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr019045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071159430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr022013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071159493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr023183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071159531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420032192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095904320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/20033020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102750925"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Qu\u00e9bec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16 % ~ 22 % of total variance in daily precipitation occurrence series and 13 % ~ 25 % of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10584-012-0451-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "114"
      }
    ], 
    "name": "Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator", 
    "pagination": "567-591", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5d5997639c02ee51f2c41b9c003b00610b583adc4f4127dce467977296fc087"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-012-0451-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034812695"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-012-0451-3", 
      "https://app.dimensions.ai/details/publication/pub.1034812695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10584-012-0451-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0451-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0451-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0451-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0451-3'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-012-0451-3 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd4d6825a30c84a799a3d6070c82eb061
4 schema:citation sg:pub.10.1007/s00477-011-0523-3
5 sg:pub.10.1007/s00704-007-0299-z
6 sg:pub.10.1007/s00704-011-0490-0
7 https://doi.org/10.1002/(sici)1097-0088(19970630)17:8<875::aid-joc164>3.0.co;2-c
8 https://doi.org/10.1002/hyp.1054
9 https://doi.org/10.1002/joc.1300
10 https://doi.org/10.1002/joc.1412
11 https://doi.org/10.1002/joc.1737
12 https://doi.org/10.1002/joc.808
13 https://doi.org/10.1016/j.envsoft.2007.10.004
14 https://doi.org/10.1016/j.jhydrol.2004.10.021
15 https://doi.org/10.1016/j.jhydrol.2005.01.025
16 https://doi.org/10.1016/j.jhydrol.2005.02.020
17 https://doi.org/10.1016/j.jhydrol.2007.08.003
18 https://doi.org/10.1016/s0022-1694(97)00130-3
19 https://doi.org/10.1016/s0022-1694(98)00186-3
20 https://doi.org/10.1016/s1364-8152(01)00060-3
21 https://doi.org/10.1029/2001wr000291
22 https://doi.org/10.1029/2004wr003739
23 https://doi.org/10.1029/2005jd006889
24 https://doi.org/10.1080/07055900.1999.9649621
25 https://doi.org/10.1093/biomet/90.2.445
26 https://doi.org/10.1175/1520-0442(1999)012<2474:tamaas>2.0.co;2
27 https://doi.org/10.1175/1520-0442(1999)012<3505:otuoii>2.0.co;2
28 https://doi.org/10.1175/1520-0442(2001)014<4422:psoiac>2.0.co;2
29 https://doi.org/10.1175/1520-0442(2002)015<1731:sdodti>2.0.co;2
30 https://doi.org/10.1175/1520-0442(2002)015<3529:gratsa>2.0.co;2
31 https://doi.org/10.1175/1520-0442(2004)017<0640:soldtc>2.0.co;2
32 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
33 https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2
34 https://doi.org/10.1175/1520-0493(1999)127<1954:edreat>2.0.co;2
35 https://doi.org/10.1175/bams-87-3-343
36 https://doi.org/10.1177/030913339902300204
37 https://doi.org/10.1201/9781420032192
38 https://doi.org/10.2307/20033020
39 https://doi.org/10.3354/cr011125
40 https://doi.org/10.3354/cr019045
41 https://doi.org/10.3354/cr022013
42 https://doi.org/10.3354/cr023183
43 https://doi.org/10.4236/nr.2010.11002
44 schema:datePublished 2012-10
45 schema:datePublishedReg 2012-10-01
46 schema:description This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Québec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16 % ~ 22 % of total variance in daily precipitation occurrence series and 13 % ~ 25 % of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf Naaba8ef19f8246a3906d4a5a020dbc16
51 Nac2ed4985b86412a99a4183e657bae68
52 sg:journal.1028211
53 schema:name Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator
54 schema:pagination 567-591
55 schema:productId N0f70077e52ae49d7af17636c1389a787
56 N550bef24a611452bbb793df1f4858e21
57 Nc7421f716a2e4f099c9f2415f8bab510
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034812695
59 https://doi.org/10.1007/s10584-012-0451-3
60 schema:sdDatePublished 2019-04-10T18:13
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N0896abd101824a91805b7c3c62696a55
63 schema:url http://link.springer.com/10.1007/s10584-012-0451-3
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0896abd101824a91805b7c3c62696a55 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N0f70077e52ae49d7af17636c1389a787 schema:name doi
70 schema:value 10.1007/s10584-012-0451-3
71 rdf:type schema:PropertyValue
72 N3d19b16a191a43e69e06aeb2d2d492a7 rdf:first sg:person.015000560134.33
73 rdf:rest N5d0ed8c366bf4e6bbda3916063718841
74 N550bef24a611452bbb793df1f4858e21 schema:name readcube_id
75 schema:value a5d5997639c02ee51f2c41b9c003b00610b583adc4f4127dce467977296fc087
76 rdf:type schema:PropertyValue
77 N5d0ed8c366bf4e6bbda3916063718841 rdf:first sg:person.016107131141.00
78 rdf:rest rdf:nil
79 N929e427e42f7433b88bab92bf6002014 rdf:first sg:person.0637160232.55
80 rdf:rest N3d19b16a191a43e69e06aeb2d2d492a7
81 Naaba8ef19f8246a3906d4a5a020dbc16 schema:volumeNumber 114
82 rdf:type schema:PublicationVolume
83 Nac2ed4985b86412a99a4183e657bae68 schema:issueNumber 3-4
84 rdf:type schema:PublicationIssue
85 Nc7421f716a2e4f099c9f2415f8bab510 schema:name dimensions_id
86 schema:value pub.1034812695
87 rdf:type schema:PropertyValue
88 Nd4d6825a30c84a799a3d6070c82eb061 rdf:first sg:person.012667234731.93
89 rdf:rest N929e427e42f7433b88bab92bf6002014
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
94 schema:name Statistics
95 rdf:type schema:DefinedTerm
96 sg:journal.1028211 schema:issn 0165-0009
97 1573-1480
98 schema:name Climatic Change
99 rdf:type schema:Periodical
100 sg:person.012667234731.93 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
101 schema:familyName Jeong
102 schema:givenName D. I.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012667234731.93
104 rdf:type schema:Person
105 sg:person.015000560134.33 schema:affiliation https://www.grid.ac/institutes/grid.440568.b
106 schema:familyName Ouarda
107 schema:givenName T. B. M. J.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000560134.33
109 rdf:type schema:Person
110 sg:person.016107131141.00 schema:affiliation https://www.grid.ac/institutes/grid.410334.1
111 schema:familyName Gachon
112 schema:givenName P.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107131141.00
114 rdf:type schema:Person
115 sg:person.0637160232.55 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
116 schema:familyName St-Hilaire
117 schema:givenName A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637160232.55
119 rdf:type schema:Person
120 sg:pub.10.1007/s00477-011-0523-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006998490
121 https://doi.org/10.1007/s00477-011-0523-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00704-007-0299-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035946721
124 https://doi.org/10.1007/s00704-007-0299-z
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00704-011-0490-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040487426
127 https://doi.org/10.1007/s00704-011-0490-0
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/(sici)1097-0088(19970630)17:8<875::aid-joc164>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1018448899
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/hyp.1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052823474
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/joc.1300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033506330
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/joc.1412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013505223
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/joc.1737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019268506
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/joc.808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030173295
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.envsoft.2007.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015863766
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jhydrol.2004.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036306676
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jhydrol.2005.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028874226
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jhydrol.2005.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012797820
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jhydrol.2007.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005871835
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0022-1694(97)00130-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040150267
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0022-1694(98)00186-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049607708
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s1364-8152(01)00060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000176716
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1029/2001wr000291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018482034
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1029/2004wr003739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010861906
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1029/2005jd006889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021471302
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/07055900.1999.9649621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053349049
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/biomet/90.2.445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421288
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1175/1520-0442(1999)012<2474:tamaas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021128850
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1175/1520-0442(1999)012<3505:otuoii>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027924628
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1175/1520-0442(2001)014<4422:psoiac>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027112058
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1175/1520-0442(2002)015<1731:sdodti>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046327610
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1175/1520-0442(2002)015<3529:gratsa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040913703
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1175/1520-0442(2004)017<0640:soldtc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014444572
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011849757
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039713955
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1175/1520-0493(1999)127<1954:edreat>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050580282
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1175/bams-87-3-343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041490498
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1177/030913339902300204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063817482
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1201/9781420032192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095904320
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2307/20033020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102750925
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3354/cr011125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158924
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3354/cr019045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071159430
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3354/cr022013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071159493
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3354/cr023183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071159531
200 rdf:type schema:CreativeWork
201 https://doi.org/10.4236/nr.2010.11002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041579505
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.265695.b schema:alternateName University of Quebec
204 schema:name INRS-ETE, University of Québec, 490 de la Couronne, G1K 9A9, Québec, Canada
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.410334.1 schema:alternateName Environment Canada
207 schema:name Atmospheric Science and Technology Directorate, Canadian Centre for Climate Modelling and Analysis (CCCMA) Section, Climate Research Division, Environment Canada, Montréal, Québec, Canada
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.440568.b schema:alternateName Khalifa University of Science and Technology
210 schema:name INRS-ETE, University of Québec, 490 de la Couronne, G1K 9A9, Québec, Canada
211 Water & Environmental Engineering, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...