Temperature scaling pattern dependence on representative concentration pathway emission scenarios View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03-23

AUTHORS

Yasuhiro Ishizaki, Hideo Shiogama, Seita Emori, Tokuta Yokohata, Toru Nozawa, Tomoo Ogura, Manabu Abe, Masakazu Yoshimori, Kiyoshi Takahashi

ABSTRACT

To preserve consistency among developed emission scenarios, the scenarios used in climate modeling, and the climate scenarios available for impact research, the pattern scaling technique is useful technique. The basic assumption of pattern scaling is that the spatial response pattern per 1 K increase in the global mean surface air temperature (SAT) (scaling pattern) is the same among emission scenarios, but this assumption requires further validation. We therefore investigated the dependence of the scaling pattern of the annual mean SAT on GHGs emission scenarios of representative concentration pathways (RCP) and the causes of that dependence using the Model for Interdisciplinary research on Climate 5 developed by Japanese research community. In particular, we focused on the relationships of the dependency with effects of aerosols and Atlantic meridional overturning circulation. We found significant dependencies of the scaling pattern on emission scenarios at middle and high latitudes of the Northern Hemisphere, with differences of >15 % over parts of East Asia, North America, and Europe. Impact researchers should take into account those dependencies that seriously affect their research. The mid-latitude dependence is caused by differences in sulfate aerosol emissions per 1 K increase in the global mean SAT, and the high-latitude dependence is mainly caused by nonlinear responses of sea ice and ocean heat transport to global warming. Long-term trends in land-use and land-cover changes did not significantly affect the scaling pattern of annual mean SAT, but they might have an effect at different timescales. More... »

PAGES

535-546

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-012-0430-8

DOI

http://dx.doi.org/10.1007/s10584-012-0430-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008166853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishizaki", 
        "givenName": "Yasuhiro", 
        "id": "sg:person.015751527531.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751527531.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiogama", 
        "givenName": "Hideo", 
        "id": "sg:person.011356656533.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emori", 
        "givenName": "Seita", 
        "id": "sg:person.016137466477.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokohata", 
        "givenName": "Tokuta", 
        "id": "sg:person.010775606765.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775606765.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nozawa", 
        "givenName": "Toru", 
        "id": "sg:person.011033746441.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ogura", 
        "givenName": "Tomoo", 
        "id": "sg:person.010065645611.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065645611.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Manabu", 
        "id": "sg:person.0675040347.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675040347.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimori", 
        "givenName": "Masakazu", 
        "id": "sg:person.015255532301.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255532301.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Kiyoshi", 
        "id": "sg:person.01011266747.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011266747.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10584-006-9222-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002503490", 
          "https://doi.org/10.1007/s10584-006-9222-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009626147", 
          "https://doi.org/10.1038/ngeo156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005466909820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045135939", 
          "https://doi.org/10.1023/a:1005466909820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069800", 
          "https://doi.org/10.1038/nature08823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-009-9765-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045216985", 
          "https://doi.org/10.1007/s10584-009-9765-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026035305597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035832790", 
          "https://doi.org/10.1023/a:1026035305597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0142-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052171603", 
          "https://doi.org/10.1007/s00382-006-0142-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03-23", 
    "datePublishedReg": "2012-03-23", 
    "description": "To preserve consistency among developed emission scenarios, the scenarios used in climate modeling, and the climate scenarios available for impact research, the pattern scaling technique is useful technique. The basic assumption of pattern scaling is that the spatial response pattern per 1\u00a0K increase in the global mean surface air temperature (SAT) (scaling pattern) is the same among emission scenarios, but this assumption requires further validation. We therefore investigated the dependence of the scaling pattern of the annual mean SAT on GHGs emission scenarios of representative concentration pathways (RCP) and the causes of that dependence using the Model for Interdisciplinary research on Climate 5 developed by Japanese research community. In particular, we focused on the relationships of the dependency with effects of aerosols and Atlantic meridional overturning circulation. We found significant dependencies of the scaling pattern on emission scenarios at middle and high latitudes of the Northern Hemisphere, with differences of >15 % over parts of East Asia, North America, and Europe. Impact researchers should take into account those dependencies that seriously affect their research. The mid-latitude dependence is caused by differences in sulfate aerosol emissions per 1\u00a0K increase in the global mean SAT, and the high-latitude dependence is mainly caused by nonlinear responses of sea ice and ocean heat transport to global warming. Long-term trends in land-use and land-cover changes did not significantly affect the scaling pattern of annual mean SAT, but they might have an effect at different timescales.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10584-012-0430-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "keywords": [
      "mean surface air temperature", 
      "surface air temperature", 
      "global mean surface air temperature", 
      "annual mean surface air temperature", 
      "Representative Concentration Pathways", 
      "emission scenarios", 
      "representative concentration pathway emission scenarios", 
      "ocean heat transport", 
      "sulfate aerosol emissions", 
      "effect of aerosols", 
      "long-term trends", 
      "Japanese research community", 
      "land cover change", 
      "spatial response patterns", 
      "Climate 5", 
      "pattern scaling", 
      "sea ice", 
      "climate modeling", 
      "concentration pathways", 
      "aerosol emissions", 
      "Northern Hemisphere", 
      "climate scenarios", 
      "high latitudes", 
      "heat transport", 
      "air temperature", 
      "impact researchers", 
      "global warming", 
      "different timescales", 
      "East Asia", 
      "impact research", 
      "North America", 
      "Atlantic", 
      "ice", 
      "warming", 
      "aerosols", 
      "latitudes", 
      "timescales", 
      "interdisciplinary research", 
      "scenarios", 
      "circulation", 
      "hemisphere", 
      "nonlinear response", 
      "significant dependency", 
      "patterns", 
      "scaling patterns", 
      "Asia", 
      "America", 
      "transport", 
      "trends", 
      "Europe", 
      "part", 
      "temperature", 
      "emission", 
      "modeling", 
      "pattern dependence", 
      "changes", 
      "increase", 
      "basic assumptions", 
      "response patterns", 
      "assumption", 
      "model", 
      "validation", 
      "relationship", 
      "dependence", 
      "differences", 
      "community", 
      "dependency", 
      "scaling", 
      "consistency", 
      "research community", 
      "scaling technique", 
      "useful technique", 
      "technique", 
      "account", 
      "research", 
      "effect", 
      "response", 
      "cause", 
      "further validation", 
      "pathway", 
      "researchers"
    ], 
    "name": "Temperature scaling pattern dependence on representative concentration pathway emission scenarios", 
    "pagination": "535-546", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008166853"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-012-0430-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-012-0430-8", 
      "https://app.dimensions.ai/details/publication/pub.1008166853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_561.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10584-012-0430-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0430-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0430-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0430-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-012-0430-8'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      22 PREDICATES      113 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-012-0430-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N34b3fc2b83a84670b593ba890ffe3c0d
4 schema:citation sg:pub.10.1007/s00382-006-0142-8
5 sg:pub.10.1007/s10584-006-9222-3
6 sg:pub.10.1007/s10584-009-9765-1
7 sg:pub.10.1023/a:1005466909820
8 sg:pub.10.1023/a:1026035305597
9 sg:pub.10.1038/nature08823
10 sg:pub.10.1038/ngeo156
11 schema:datePublished 2012-03-23
12 schema:datePublishedReg 2012-03-23
13 schema:description To preserve consistency among developed emission scenarios, the scenarios used in climate modeling, and the climate scenarios available for impact research, the pattern scaling technique is useful technique. The basic assumption of pattern scaling is that the spatial response pattern per 1 K increase in the global mean surface air temperature (SAT) (scaling pattern) is the same among emission scenarios, but this assumption requires further validation. We therefore investigated the dependence of the scaling pattern of the annual mean SAT on GHGs emission scenarios of representative concentration pathways (RCP) and the causes of that dependence using the Model for Interdisciplinary research on Climate 5 developed by Japanese research community. In particular, we focused on the relationships of the dependency with effects of aerosols and Atlantic meridional overturning circulation. We found significant dependencies of the scaling pattern on emission scenarios at middle and high latitudes of the Northern Hemisphere, with differences of >15 % over parts of East Asia, North America, and Europe. Impact researchers should take into account those dependencies that seriously affect their research. The mid-latitude dependence is caused by differences in sulfate aerosol emissions per 1 K increase in the global mean SAT, and the high-latitude dependence is mainly caused by nonlinear responses of sea ice and ocean heat transport to global warming. Long-term trends in land-use and land-cover changes did not significantly affect the scaling pattern of annual mean SAT, but they might have an effect at different timescales.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N0157b0166f1b4200910728a7fc618db3
18 N51194c092d7a4c54baec606eb021ad6e
19 sg:journal.1028211
20 schema:keywords America
21 Asia
22 Atlantic
23 Climate 5
24 East Asia
25 Europe
26 Japanese research community
27 North America
28 Northern Hemisphere
29 Representative Concentration Pathways
30 account
31 aerosol emissions
32 aerosols
33 air temperature
34 annual mean surface air temperature
35 assumption
36 basic assumptions
37 cause
38 changes
39 circulation
40 climate modeling
41 climate scenarios
42 community
43 concentration pathways
44 consistency
45 dependence
46 dependency
47 differences
48 different timescales
49 effect
50 effect of aerosols
51 emission
52 emission scenarios
53 further validation
54 global mean surface air temperature
55 global warming
56 heat transport
57 hemisphere
58 high latitudes
59 ice
60 impact research
61 impact researchers
62 increase
63 interdisciplinary research
64 land cover change
65 latitudes
66 long-term trends
67 mean surface air temperature
68 model
69 modeling
70 nonlinear response
71 ocean heat transport
72 part
73 pathway
74 pattern dependence
75 pattern scaling
76 patterns
77 relationship
78 representative concentration pathway emission scenarios
79 research
80 research community
81 researchers
82 response
83 response patterns
84 scaling
85 scaling patterns
86 scaling technique
87 scenarios
88 sea ice
89 significant dependency
90 spatial response patterns
91 sulfate aerosol emissions
92 surface air temperature
93 technique
94 temperature
95 timescales
96 transport
97 trends
98 useful technique
99 validation
100 warming
101 schema:name Temperature scaling pattern dependence on representative concentration pathway emission scenarios
102 schema:pagination 535-546
103 schema:productId N5f219927b60743679cca66849beb53c4
104 Na4a44c1b77e64994b9468a22bbace2cb
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008166853
106 https://doi.org/10.1007/s10584-012-0430-8
107 schema:sdDatePublished 2022-05-20T07:27
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher Ne7a92c4e229047d4b41ed68bfb9fde9c
110 schema:url https://doi.org/10.1007/s10584-012-0430-8
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N0007ebf8cb8d4bd49132153b0471bf20 rdf:first sg:person.016137466477.58
115 rdf:rest N04a3cc6933864a679304fddde6645fc8
116 N0157b0166f1b4200910728a7fc618db3 schema:volumeNumber 112
117 rdf:type schema:PublicationVolume
118 N04a3cc6933864a679304fddde6645fc8 rdf:first sg:person.010775606765.15
119 rdf:rest N8dc4e223ba224efdb951122666c60db9
120 N189a6476172646c3a47fed92976d0990 rdf:first sg:person.015255532301.12
121 rdf:rest Na827d69e7d944c47968602a6fd9f964e
122 N347d588b468d476e867ad160673babcb rdf:first sg:person.0675040347.49
123 rdf:rest N189a6476172646c3a47fed92976d0990
124 N34b3fc2b83a84670b593ba890ffe3c0d rdf:first sg:person.015751527531.19
125 rdf:rest Nc31ce0ede71b4a25a59f5b390549cefc
126 N51194c092d7a4c54baec606eb021ad6e schema:issueNumber 2
127 rdf:type schema:PublicationIssue
128 N5f219927b60743679cca66849beb53c4 schema:name doi
129 schema:value 10.1007/s10584-012-0430-8
130 rdf:type schema:PropertyValue
131 N8dc4e223ba224efdb951122666c60db9 rdf:first sg:person.011033746441.19
132 rdf:rest Nf9b0ffbeb1204f53947652b6be84feaf
133 Na4a44c1b77e64994b9468a22bbace2cb schema:name dimensions_id
134 schema:value pub.1008166853
135 rdf:type schema:PropertyValue
136 Na827d69e7d944c47968602a6fd9f964e rdf:first sg:person.01011266747.73
137 rdf:rest rdf:nil
138 Nc31ce0ede71b4a25a59f5b390549cefc rdf:first sg:person.011356656533.12
139 rdf:rest N0007ebf8cb8d4bd49132153b0471bf20
140 Ne7a92c4e229047d4b41ed68bfb9fde9c schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 Nf9b0ffbeb1204f53947652b6be84feaf rdf:first sg:person.010065645611.09
143 rdf:rest N347d588b468d476e867ad160673babcb
144 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
145 schema:name Engineering
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
148 schema:name Interdisciplinary Engineering
149 rdf:type schema:DefinedTerm
150 sg:journal.1028211 schema:issn 0165-0009
151 1573-1480
152 schema:name Climatic Change
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.010065645611.09 schema:affiliation grid-institutes:grid.140139.e
156 schema:familyName Ogura
157 schema:givenName Tomoo
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065645611.09
159 rdf:type schema:Person
160 sg:person.01011266747.73 schema:affiliation grid-institutes:grid.140139.e
161 schema:familyName Takahashi
162 schema:givenName Kiyoshi
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011266747.73
164 rdf:type schema:Person
165 sg:person.010775606765.15 schema:affiliation grid-institutes:grid.140139.e
166 schema:familyName Yokohata
167 schema:givenName Tokuta
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775606765.15
169 rdf:type schema:Person
170 sg:person.011033746441.19 schema:affiliation grid-institutes:grid.140139.e
171 schema:familyName Nozawa
172 schema:givenName Toru
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19
174 rdf:type schema:Person
175 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
176 schema:familyName Shiogama
177 schema:givenName Hideo
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
179 rdf:type schema:Person
180 sg:person.015255532301.12 schema:affiliation grid-institutes:grid.26999.3d
181 schema:familyName Yoshimori
182 schema:givenName Masakazu
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255532301.12
184 rdf:type schema:Person
185 sg:person.015751527531.19 schema:affiliation grid-institutes:grid.140139.e
186 schema:familyName Ishizaki
187 schema:givenName Yasuhiro
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751527531.19
189 rdf:type schema:Person
190 sg:person.016137466477.58 schema:affiliation grid-institutes:grid.140139.e
191 schema:familyName Emori
192 schema:givenName Seita
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58
194 rdf:type schema:Person
195 sg:person.0675040347.49 schema:affiliation grid-institutes:grid.140139.e
196 schema:familyName Abe
197 schema:givenName Manabu
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675040347.49
199 rdf:type schema:Person
200 sg:pub.10.1007/s00382-006-0142-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052171603
201 https://doi.org/10.1007/s00382-006-0142-8
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s10584-006-9222-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002503490
204 https://doi.org/10.1007/s10584-006-9222-3
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s10584-009-9765-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045216985
207 https://doi.org/10.1007/s10584-009-9765-1
208 rdf:type schema:CreativeWork
209 sg:pub.10.1023/a:1005466909820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135939
210 https://doi.org/10.1023/a:1005466909820
211 rdf:type schema:CreativeWork
212 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
213 https://doi.org/10.1023/a:1026035305597
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
216 https://doi.org/10.1038/nature08823
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/ngeo156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009626147
219 https://doi.org/10.1038/ngeo156
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.140139.e schema:alternateName National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan
222 schema:name National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan
223 rdf:type schema:Organization
224 grid-institutes:grid.26999.3d schema:alternateName Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan
225 schema:name Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...