Coal to gas: the influence of methane leakage View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-08-26

AUTHORS

Tom M. L. Wigley

ABSTRACT

Carbon dioxide (CO2) emissions from fossil fuel combustion may be reduced by using natural gas rather than coal to produce energy. Gas produces approximately half the amount of CO2 per unit of primary energy compared with coal. Here we consider a scenario where a fraction of coal usage is replaced by natural gas (i.e., methane, CH4) over a given time period, and where a percentage of the gas production is assumed to leak into the atmosphere. The additional CH4 from leakage adds to the radiative forcing of the climate system, offsetting the reduction in CO2 forcing that accompanies the transition from coal to gas. We also consider the effects of: methane leakage from coal mining; changes in radiative forcing due to changes in the emissions of sulfur dioxide and carbonaceous aerosols; and differences in the efficiency of electricity production between coal- and gas-fired power generation. On balance, these factors more than offset the reduction in warming due to reduced CO2 emissions. When gas replaces coal there is additional warming out to 2,050 with an assumed leakage rate of 0%, and out to 2,140 if the leakage rate is as high as 10%. The overall effects on global-mean temperature over the 21st century, however, are small. More... »

PAGES

601

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10584-011-0217-3

DOI

http://dx.doi.org/10.1007/s10584-011-0217-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024246962


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Adelaide, Adelaide, South Australia, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1010.0", 
          "name": [
            "National Center for Atmospheric Research, Post Office Box 3000, 80307-3000, Boulder, CO, USA", 
            "University of Adelaide, Adelaide, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wigley", 
        "givenName": "Tom M. L.", 
        "id": "sg:person.016171504677.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005584914078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031201712", 
          "https://doi.org/10.1023/a:1005584914078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005537014987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017601573", 
          "https://doi.org/10.1023/a:1005537014987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0061-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009708465", 
          "https://doi.org/10.1007/s10584-011-0061-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-009-9585-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037085646", 
          "https://doi.org/10.1007/s10584-009-9585-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015737505552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004408856", 
          "https://doi.org/10.1023/a:1015737505552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/349503a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041655521", 
          "https://doi.org/10.1038/349503a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08-26", 
    "datePublishedReg": "2011-08-26", 
    "description": "Carbon dioxide (CO2) emissions from fossil fuel combustion may be reduced by using natural gas rather than coal to produce energy. Gas produces approximately half the amount of CO2 per unit of primary energy compared with coal. Here we consider a scenario where a fraction of coal usage is replaced by natural gas (i.e., methane, CH4) over a given time period, and where a percentage of the gas production is assumed to leak into the atmosphere. The additional CH4 from leakage adds to the radiative forcing of the climate system, offsetting the reduction in CO2 forcing that accompanies the transition from coal to gas. We also consider the effects of: methane leakage from coal mining; changes in radiative forcing due to changes in the emissions of sulfur dioxide and carbonaceous aerosols; and differences in the efficiency of electricity production between coal- and gas-fired power generation. On balance, these factors more than offset the reduction in warming due to reduced CO2 emissions. When gas replaces coal there is additional warming out to 2,050 with an assumed leakage rate of 0%, and out to 2,140 if the leakage rate is as high as 10%. The overall effects on global-mean temperature over the 21st century, however, are small.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10584-011-0217-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "108"
      }
    ], 
    "keywords": [
      "methane leakage", 
      "natural gas", 
      "gas-fired power generation", 
      "leakage rate", 
      "power generation", 
      "electricity production", 
      "carbon dioxide emissions", 
      "amount of CO2", 
      "coal usage", 
      "coal", 
      "coal mining", 
      "gas production", 
      "fuel combustion", 
      "CO2 emissions", 
      "fossil fuel combustion", 
      "primary energy", 
      "dioxide emissions", 
      "gas", 
      "additional CH4", 
      "emission", 
      "leakage", 
      "combustion", 
      "CO2", 
      "energy", 
      "sulfur dioxide", 
      "carbonaceous aerosols", 
      "radiative forcing", 
      "forcing", 
      "CH4", 
      "temperature", 
      "dioxide", 
      "efficiency", 
      "atmosphere", 
      "reduction", 
      "generation", 
      "influence", 
      "effect", 
      "aerosols", 
      "system", 
      "production", 
      "rate", 
      "scenarios", 
      "amount", 
      "fraction", 
      "usage", 
      "units", 
      "transition", 
      "warming", 
      "mining", 
      "time period", 
      "balance", 
      "climate system", 
      "changes", 
      "overall effect", 
      "additional warming", 
      "global mean temperature", 
      "percentage", 
      "factors", 
      "differences", 
      "period", 
      "century"
    ], 
    "name": "Coal to gas: the influence of methane leakage", 
    "pagination": "601", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024246962"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10584-011-0217-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10584-011-0217-3", 
      "https://app.dimensions.ai/details/publication/pub.1024246962"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_533.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10584-011-0217-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10584-011-0217-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10584-011-0217-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10584-011-0217-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10584-011-0217-3'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      93 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10584-011-0217-3 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0914
4 anzsrc-for:0915
5 schema:author N35f70736263944b3bae8b11e813f1199
6 schema:citation sg:pub.10.1007/s10584-009-9585-3
7 sg:pub.10.1007/s10584-011-0061-5
8 sg:pub.10.1023/a:1005537014987
9 sg:pub.10.1023/a:1005584914078
10 sg:pub.10.1023/a:1015737505552
11 sg:pub.10.1038/349503a0
12 schema:datePublished 2011-08-26
13 schema:datePublishedReg 2011-08-26
14 schema:description Carbon dioxide (CO2) emissions from fossil fuel combustion may be reduced by using natural gas rather than coal to produce energy. Gas produces approximately half the amount of CO2 per unit of primary energy compared with coal. Here we consider a scenario where a fraction of coal usage is replaced by natural gas (i.e., methane, CH4) over a given time period, and where a percentage of the gas production is assumed to leak into the atmosphere. The additional CH4 from leakage adds to the radiative forcing of the climate system, offsetting the reduction in CO2 forcing that accompanies the transition from coal to gas. We also consider the effects of: methane leakage from coal mining; changes in radiative forcing due to changes in the emissions of sulfur dioxide and carbonaceous aerosols; and differences in the efficiency of electricity production between coal- and gas-fired power generation. On balance, these factors more than offset the reduction in warming due to reduced CO2 emissions. When gas replaces coal there is additional warming out to 2,050 with an assumed leakage rate of 0%, and out to 2,140 if the leakage rate is as high as 10%. The overall effects on global-mean temperature over the 21st century, however, are small.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N0edc6474cbbd44a381dca24197145ad2
18 N937e75d66cff4727b57001723c0ec093
19 sg:journal.1028211
20 schema:keywords CH4
21 CO2
22 CO2 emissions
23 additional CH4
24 additional warming
25 aerosols
26 amount
27 amount of CO2
28 atmosphere
29 balance
30 carbon dioxide emissions
31 carbonaceous aerosols
32 century
33 changes
34 climate system
35 coal
36 coal mining
37 coal usage
38 combustion
39 differences
40 dioxide
41 dioxide emissions
42 effect
43 efficiency
44 electricity production
45 emission
46 energy
47 factors
48 forcing
49 fossil fuel combustion
50 fraction
51 fuel combustion
52 gas
53 gas production
54 gas-fired power generation
55 generation
56 global mean temperature
57 influence
58 leakage
59 leakage rate
60 methane leakage
61 mining
62 natural gas
63 overall effect
64 percentage
65 period
66 power generation
67 primary energy
68 production
69 radiative forcing
70 rate
71 reduction
72 scenarios
73 sulfur dioxide
74 system
75 temperature
76 time period
77 transition
78 units
79 usage
80 warming
81 schema:name Coal to gas: the influence of methane leakage
82 schema:pagination 601
83 schema:productId N672f97baa046400ebcc2d49127beeffe
84 Nafe0f6bc744e4dd2b421fdd165a15946
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024246962
86 https://doi.org/10.1007/s10584-011-0217-3
87 schema:sdDatePublished 2022-12-01T06:28
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N56a70f091add44088e50d5b95767aea2
90 schema:url https://doi.org/10.1007/s10584-011-0217-3
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N0edc6474cbbd44a381dca24197145ad2 schema:issueNumber 3
95 rdf:type schema:PublicationIssue
96 N35f70736263944b3bae8b11e813f1199 rdf:first sg:person.016171504677.21
97 rdf:rest rdf:nil
98 N56a70f091add44088e50d5b95767aea2 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N672f97baa046400ebcc2d49127beeffe schema:name dimensions_id
101 schema:value pub.1024246962
102 rdf:type schema:PropertyValue
103 N937e75d66cff4727b57001723c0ec093 schema:volumeNumber 108
104 rdf:type schema:PublicationVolume
105 Nafe0f6bc744e4dd2b421fdd165a15946 schema:name doi
106 schema:value 10.1007/s10584-011-0217-3
107 rdf:type schema:PropertyValue
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
112 schema:name Chemical Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
115 schema:name Resources Engineering and Extractive Metallurgy
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
118 schema:name Interdisciplinary Engineering
119 rdf:type schema:DefinedTerm
120 sg:journal.1028211 schema:issn 0165-0009
121 1573-1480
122 schema:name Climatic Change
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.016171504677.21 schema:affiliation grid-institutes:grid.1010.0
126 schema:familyName Wigley
127 schema:givenName Tom M. L.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21
129 rdf:type schema:Person
130 sg:pub.10.1007/s10584-009-9585-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037085646
131 https://doi.org/10.1007/s10584-009-9585-3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10584-011-0061-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009708465
134 https://doi.org/10.1007/s10584-011-0061-5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1005537014987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017601573
137 https://doi.org/10.1023/a:1005537014987
138 rdf:type schema:CreativeWork
139 sg:pub.10.1023/a:1005584914078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031201712
140 https://doi.org/10.1023/a:1005584914078
141 rdf:type schema:CreativeWork
142 sg:pub.10.1023/a:1015737505552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004408856
143 https://doi.org/10.1023/a:1015737505552
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/349503a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041655521
146 https://doi.org/10.1038/349503a0
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.1010.0 schema:alternateName University of Adelaide, Adelaide, South Australia, Australia
149 schema:name National Center for Atmospheric Research, Post Office Box 3000, 80307-3000, Boulder, CO, USA
150 University of Adelaide, Adelaide, South Australia, Australia
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...